

Unity 4.x Game AI Programming

Learn and implement game AI in Unity3D with a lot of
sample projects and next-generation techniques to use
in your Unity3D projects

Aung Sithu Kyaw

Clifford Peters

Thet Naing Swe

 BIRMINGHAM - MUMBAI

Unity 4.x Game AI Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1160713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-340-0

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Authors
Aung Sithu Kyaw

Clifford Peters

Thet Naing Swe

Reviewers
Julien Lange

Clifford Peters

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Arun Nadar

Technical Editors
Shashank Desai

Krishnaveni Haridas

Rikita Poojari

Project Coordinator
Anurag Banerjee

Proofreaders
Maria Gould

Paul Hindle

Aaron Nash

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Authors

Aung Sithu Kyaw is originally from Myanmar, (Burma) and has over seven
years of experience in the software industry. His main interests include game-play
programming, startups, entrepreneurship, writing, and sharing knowledge. He
holds a Master of Science degree from Nanyang Technological University (NTU),
Singapore, majoring in Digital Media Technology. Over the past few years, he has
worked as a Research Programmer at INSEAD, Sr. Game Programmer at Playware
Studios Asia, Singapore, and lastly as a Research Associate at NTU. In 2011, Aung
co-founded Rival Edge Pte Ltd., a Singapore-based interactive digital media company
that provides a technical consultancy service to creative agencies and also produces
social mobile games. Visit http://rivaledge.sg for more information. Aung is
the co-author of Irrlicht 1.7 Realtime 3D Engine Beginner's Guide, Packt Publishing,
and is also a visiting lecturer at NTU conducting workshops on game design and
development using Unity3D.He can be followed on Twitter @aungsithu and by using
his LinkedIn profile linkedin.com/in/aungsithu.

Thanks to my co-authors who worked with me really hard on this
book despite their busy schedules and got this book published.
Also, thanks to the team at Packt Publishing for helping us in the
production of this book. And finally, thanks to the awesome guys
at Unity3D for building this amazing toolset and for making it
affordable to indie game developers.

Clifford Peters is a programmer and a computer scientist. He has reviewed the
following Packt Publishing books: Unity Game Development Essentials, Unity 3D Game
Development by Example Beginner's Guide, Unity 3 Game Development Hotshot, Unity
3.x Game Development by Example Beginner's Guide, Unity iOS Game Development
Beginner's Guide, and Unity iOS Essentials.

Thet Naing Swe is the co-founder and Chief Creative Director of Rival Edge Pte
Ltd., based in Singapore. He graduated from the University of Central Lancashire
where he majored in Game Design and Development and started his career as
a game programmer at the UK-based Code Monkeys studios. He relocated to
Singapore in 2010 and worked as a graphics programmer at Nanyang Technological
University (NTU) on a cinematic research project together with Aung. Currently at
Rival Edge, he's responsible for interactive digital media consulting projects mainly
using Unity3D as well as making social mobile games for a casual audience. He can
be reached via thetnswe@rivaledge.sg.

I would like to thank the whole team at Packt Publishing for keeping
track of all the logistics and making sure the book was published. I
really appreciate that. Besides that, I'd like to thank my parents for
raising and supporting me all these years and letting me pursue my
dream to become a game developer. Without all of your support, I
wouldn't be here today.

And finally, huge thanks to my wife, May Thandar Aung, for
allowing me to work on this book after office hours, late at night,
and weekends. Without your understanding and support, this book
would have been delayed for another year. I'm grateful to have your
support with me whatever I do. Love you.

About the Reviewer

Julien Lange is a 32 year old IT expert in Software Engineering. He started to
develop on Amstrad CPC464 with the BASIC language when he was 7. He learned
Visual Basic soon after, then VB.NET and C#. For several years until the end of
his studies, he developed and maintained several PHP and ASP.NET e-business
websites. After his graduation, he continued to learn more and more about software
like Architecture, Project management always acquiring new skills.

It was at work while talking with a colleague in August 2009 and after discovering
the high potential of iPhone games and softwares that he decided to find an
improved game engine allowing him to concentrate only on the main purpose of
developing a game and not a game engine. After trying two other game engines,
his choice was Unity 3D thanks to its compatibility with C# and its high frame rate
performance on iPhone. In addition to his main work, he opened iXGaming.com as
self-employed in December 2010 and launched several applications on the AppStore,
such as Cartoon TV, GalaXia, and so on.

I would like to thank my wife for allowing me to take some time to
review books on my computer. I would also like to thank Frederic
for all the work we completed together with Unity. I would also like
to thank all the current Unity Asset Store customers who are using
my published assets and scripts. New services are coming very soon
on the Asset Store.

Finally, I would like to thank my family, my friends, and colleagues
including Stephane D., Chakib L., Christelle P., Raphael D., Alain
D.L, Sebastien P., and Emmanuel.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt atwww.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

To the loving memory of my father, U Aung Than, and to my little girl, who brings a new
perspective to my life

						 –dedicated by Aung Sithu Kyaw

Table of Contents
Preface	 1
Chapter 1: Introduction to AI	 5

Artificial Intelligence (AI)	 5
AI in games	 6
AI techniques	 7

Finite State Machines (FSM)	 7
Random and probability in AI	 9
The sensor system	 10

Polling	 10
The messaging system	 10

Flocking, swarming, and herding	 11
Path following and steering	 12
A* pathfinding	 13
A navigation mesh	 20
The behavior trees	 23
Locomotion	 25
Dijkstra's algorithm	 28

Summary	 28
Chapter 2: Finite State Machines	 29

The player's tank	 30
The PlayerTankController class	 30
Initialization	 31

Shooting bullet	 32
Controlling the tank	 32

The bullet class	 35
Setting up waypoints	 37
The abstract FSM class	 38

Table of Contents

[ii]

The enemy tank AI	 39
The patrol state	 42
The chase state	 43
The attack state	 44
The dead state	 45

Taking damage	 46
Using an FSM framework	 47

The AdvanceFSM class	 48
The FSMState class	 49
The state classes	 50

The PatrolState class	 50
The NPCTankController class	 52

Summary	 54
Chapter 3: Random and Probability	 55

Random	 56
Random class	 56

Simple random dice game	 57
Definition of probability	 58

Independent and related events	 59
Conditional probability	 59

A loaded dice	 60
Character personalities	 61
FSM with probability	 62
Dynamic AI	 64
Demo slot machine	 65

Random slot machine	 65
Weighted probability	 69

Near miss	 73
Summary	 74

Chapter 4: Implementing Sensors	 75
Basic sensory systems	 76
Scene setup	 76
Player tank and aspect	 78

Player tank	 79
Aspect	 81

AI character	 81
Sense	 83
Perspective	 83
Touch	 86

Testing	 88
Summary	 88

Table of Contents

[iii]

Chapter 5: Flocking	 89
Flocking from Unity's Island Demo	 89

Individual Behavior	 90
Controller	 97

Alternative implementation	 99
FlockController	 101

Summary	 106
Chapter 6: Path Following and Steering Behaviors	 107

Following a path	 108
Path script	 110
Path follower	 111

Avoiding obstacles	 114
Adding a custom layer	 116
Obstacle avoidance	 117

Summary	 121
Chapter 7: A* Pathfinding	 123

A* algorithm revisit	 123
Implementation	 124

Node	 125
PriorityQueue	 126
GridManager	 127
AStar	 132
TestCode class	 135

Scene setup	 137
Testing	 141
Summary	 142

Chapter 8: Navigation Mesh	 143
Introduction	 144
Setting up the map	 144

Navigation Static	 145
Baking the navigation mesh	 145
Nav Mesh Agent	 146

Updating agents' destinations	 148
Scene with slope	 149
NavMeshLayers	 151
Off Mesh Links	 153

Generated Off Mesh Links	 154
Manual Off Mesh Links	 156

Summary	 158

Table of Contents

[iv]

Chapter 9: Behavior Trees	 159
Behave plugin	 160
Workflow	 161
Action	 164
Interfacing with the script	 166
Decorator	 169
Behave debugger	 171
Sequence	 172
Exploring Behave results	 173
Selector	 175
Priority selector	 177
Parallel	 179
Reference	 181
The Robots versus Aliens project	 181
Summary	 184

Chapter 10: Putting It All Together	 185
Scene setup	 186

Tags and layers	 188
Vehicles	 189

Player car controller	 190
AI Car Controller	 192
Finite State Machines (FSMs)	 194

Patrol state	 195
Chase state	 197
Attack state	 198

Weapons	 199
Gun 	 200
Bullet	 201
Launcher	 203
Missile	 205

Summary	 208
Index	 209

Preface
This book is meant to help you to incorporate various Artificial Intelligence
techniques into your games. We will discuss decision techniques such as Finite State
Machines and Behavior Trees. We will also look at movement, obstacle avoidance,
and flocking. We also show how to follow a path, how to create a path using the
A* pathfinding algorithm, and then how to reach a destination using a navigation
mesh. As a bonus we will go into detail about random and probability, and then
incorporate these ideas into a final project.

What this book covers
Chapter 1, Introduction to AI, talks about what Artificial Intelligence is, and how it is used
in games. Also, we talk about various techniques used to implement AI into games.

Chapter 2, Finite State Machines, discusses a way of simplifying how we manage the
decisions, which AI needs to make. We use FSMs to determine how AI behaves in a
particular state and how it transitions to other states.

Chapter 3, Random and Probability, discusses the basics behind probability, and how
to change the probability of a particular outcome. Then we look at how to add
randomness to our game to make the AI less predictable.

Chapter 4, Implementing Sensors, looks at where we should make our character aware
of the world around them. With the ability of our characters to see and hear, they
will know when an enemy is nearby and will know when to attack.

Chapter 5, Flocking, discusses a situation where many objects travel together as a
group. We will look at two different ways to implement flocking, and how it can be
used to make objects move together.

Chapter 6, Path Following and Steering Behaviors, looks at how AI characters can follow
a path provided to reach a destination. Then we look at how AI characters can find a
target without knowing a path, and by moving towards a goal while avoiding.

Preface

[2]

Chapter 7, A* Pathfinding, discusses a popular algorithm, which is used to find the
best route from a given location to a target location. With A*, we scan the terrain and
find the best path that leads us to the goal.

Chapter 8, Navigation Mesh, discusses using the power of Unity to make pathfinding
easier to implement. By creating a Navigation Mesh (this requires Unity Pro), we
will be able to represent the scene around us better then we could using tiles and
the A* algorithm.

Chapter 9, Behavior Trees, expands upon Finite State Machines into something we can
use for even the most complex of games. We will be using the free plugin Behave to
help us create and manage Behavior Trees in Unity.

Chapter 10, Putting It All Together, takes various elements of what we have learned
throughout the book and putting together one last project. From here you will be
able to apply the remaining AI elements we learned and create an impressive vehicle
battle game.

What you need for this book
The main requirement for this book is having Unity Version 3.5 or higher installed.
Chapter 8, Navigation Mesh talks about creating a Navigation Mesh, something
that requires Unity Pro. In Chapter 9, Behavior Trees we download Behave, a free
Behavior Tree plugin, which requires an account with the Unity Store. Both of these
requirements are optional because the assets that come with this book already have
the Navigation Mesh generated and the Behave plugin.

Who this book is for
This book is for anyone who wants to learn about incorporating AI into games. This
book is intended for users with prior experience of using Unity. We will be coding in
C#, so some familiarity with this language is expected.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The AdvanceFSM class basically manages
all the FSMState(s) implemented, and keeps updated with the transitions and the
current state."

Preface

[3]

A block of code is set as follows:
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public enum Transition
{
 None = 0,
 SawPlayer,
 ReachPlayer,
 LostPlayer,
 NoHealth,
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Our Tank
object is basically a simple Mesh with a Rigidbody component."

Warnings or important notes appear in a box like
this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output.You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/3400OT_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Introduction to AI
This chapter will give you a little background on artificial intelligence in academic,
traditional domains, and game specific applications. We'll learn how the application
and implementation of AI in games is different from other domains, and the
important and special requirements for AI in games. We'll also explore the basic
techniques of AI used in games. This chapter will serve as a reference for later
chapters, where we'll implement those AI techniques in Unity.

Artificial Intelligence (AI)
Living organisms such as animals and humans have some sort of intelligence
that helps us in making a particular decision to perform something. On the other
hand, computers are just electronic devices that can accept data, perform logical
and mathematical operations at high speeds, and output the results. So, Artificial
Intelligence (AI) is essentially the subject of making computers able to think and
decide like living organisms to perform specific operations.

So, apparently this is a huge subject. And there's no way that such a small book will
be able to cover everything related to AI. But it is really important to understand
the basics of AI being used in different domains. AI is just a general term; its
implementations and applications are different for different purposes, solving
different sets of problems.

Introduction to AI

[6]

Before we move on to game-specific techniques, we'll take a look at the following
research areas in AI applications:

•	 Computer vision: It is the ability to take visual input from sources such as
videos and cameras, and analyze them to do particular operations such as
facial recognition, object recognition, and optical-character recognition.

•	 Natural language processing (NLP): It is the ability that allows a machine
to read and understand the languages, as we normally write and speak.
The problem is that the languages we use today are difficult for machines to
understand. There are many different ways to say the same thing, and the
same sentence can have different meanings according to the context. NLP
is an important step for machines, since they need to understand the
languages and expressions we use, before they can process them and
respond accordingly. Fortunately, there's an enormous amount of data sets
available on the Web that can help researchers to do automatic analysis of
a language.

•	 Common sense reasoning: This is a technique that our brains can
easily use to draw answers even from the domains we don't fully
understand. Common sense knowledge is a usual and common way for
us to attempt certain questions, since our brains can mix and interplay
between the context, background knowledge, and language proficiency.
But making machines to apply such knowledge is very complex, and still
a major challenge for researchers.

AI in games
Game AI needs to complement the quality of a game. For that we need to understand
the fundamental requirement that every game must have. The answer should be
easy. It is the fun factor. So, what makes a game fun to play? This is the subject of
game design, and a good reference is The Art of Game Design by Jesse Schell. Let's
attempt to tackle this question without going deep into game design topics. We'll
find that a challenging game is indeed fun to play. Let me repeat: it's about making a
game challenging. This means the game should not be so difficult that it's impossible
for the player to beat the opponent, or too easy to win. Finding the right challenge
level is the key to make a game fun to play.

Chapter 1

[7]

And that's where the AI kicks in. The role of AI in games is to make it fun by
providing challenging opponents to compete, and interesting non-player characters
(NPCs) that behave realistically inside the game world. So, the objective here is not
to replicate the whole thought process of humans or animals, but to make the NPCs
seem intelligent by reacting to the changing situations inside the game world in a
way that makes sense to the player.

The reason that we don't want to make the AI system in games so computationally
expensive is that the processing power required for AI calculations needs to be
shared between other operations such as graphic rendering and physics simulation.
Also, don't forget that they are all happening in real time, and it's also really
important to achieve a steady framerate throughout the game. There were even
attempts to create dedicated processor for AI calculations (AI Seek's Intia Processor).
With the ever-increasing processing power, we now have more and more room
for AI calculations. However, like all the other disciplines in game development,
optimizing AI calculations remains a huge challenge for the AI developers.

AI techniques
In this section, we'll walk through some of the AI techniques being used in different
types of games. We'll learn how to implement each of these features in Unity in the
upcoming chapters. Since this book is not focused on AI techniques itself, but the
implementation of those techniques inside Unity, we won't go into too much detail
about these techniques here. So, let's just take it as a crash course, before actually
going into implementation. If you want to learn more about AI for games, there are
some really great books out there, such as Programming Game AI by Example by Mat
Buckland and Artificial Intelligence for Games by Ian Millington and John Funge. The AI
Game Programming Wisdom series also contain a lot of useful resources and articles on
the latest AI techniques.

Finite State Machines (FSM)
Finite State Machines (FSM) can be considered as one of the simplest AI model
form, and are commonly used in the majority of games. A state machine basically
consists of a finite number of states that are connected in a graph by the transitions
between them. A game entity starts with an initial state, and then looks out for the
events and rules that will trigger a transition to another state. A game entity can only
be in exactly one state at any given time.

Introduction to AI

[8]

For example, let's take a look at an AI guard character in a typical shooting game. Its
states could be as simple as patrolling, chasing, and shooting.

Simple FSM of an AI guard character

There are basically four components in a simple FSM:

•	 States: This component defines a set of states that a game entity or an NPC
can choose from (patrol, chase, and shoot)

•	 Transitions: This component defines relations between different states
•	 Rules: This component is used to trigger a state transition (player on sight,

close enough to attack, and lost/killed player)
•	 Events: This is the component, which will trigger to check the rules

(guard's visible area, distance with the player, and so on)

So, a monster in Quake 2 might have the following states: standing, walking,
running, dodging, attacking, idle, and searching.

FSMs are widely used in game AI especially, because they are really easy to
implement and more than enough for both simple and somewhat complex games.
Using simple if/else statements or switch statements, we can easily implement an
FSM. It can get messy, as we start to have more states and more transitions. We'll
look at how to manage a simple FSM in the next chapter.

Chapter 1

[9]

Random and probability in AI
Imagine an enemy bot in an FPS game that can always kill the player with a
headshot, an opponent in a racing game that always chooses the best route, and
overtakes without collision with any obstacle. Such a level of intelligence will make
the game so difficult that it becomes almost impossible to win. On the other hand,
imagine an AI enemy that always chooses the same route to follow, or tries to escape
from the player. AI controlled entities behaving the same way every time the player
encounters them, makes the game predictable and easy to win.

Both of the previous situations obviously affect the fun aspect of the game, and
make the player feel like the game is not challenging or fair enough anymore. One
way to fix this sort of perfect AI and stupid AI is to introduce some errors in their
intelligence. In games, randomness and probabilities are applied in the decision
making process of AI calculations. The following are the main situations when we
would want to let our AI entities change a random decision:

•	 Non-intentional: This situation is sometimes a game agent, or perhaps an
NPC might need to make a decision randomly, just because it doesn't have
enough information to make a perfect decision, and/or it doesn't really
matter what decision it makes. Simply making a decision randomly and
hoping for the best result is the way to go in such a situation.

•	 Intentional: This situation is for perfect AI and stupid AI. As we discussed
in the previous examples, we will need to add some randomness purposely,
just to make them more realistic, and also to match the difficulty level that
the player is comfortable with. Such randomness and probability could be
used for things such as hit probabilities, plus or minus random damage
on top of base damage. Using randomness and probability we can add
a sense of realistic uncertainty to our game and make our AI system
somewhat unpredictable.

We can also use probability to define different classes of AI characters. Let's look at
the hero characters from Defense of the Ancient (DotA), which is a popular action
real-time strategy (RTS) game mode of Warcraft III. There are three categories of
heroes based on the three main attributes: strength, intelligence, and agility. Strength
is the measure of the physical power of the hero, while intellect relates to how well
the hero can control spells and magic. Agility defines a hero's ability to avoid attacks
and attack quickly. An AI hero from the strength category will have the ability to do
more damage during close combat, while an intelligence hero will have more chance
of success to score higher damage using spells and magic. Carefully balancing the
randomness and probability between different classes and heroes, makes the game a
lot more challenging, and makes DotA a lot fun to play.

Introduction to AI

[10]

The sensor system
Our AI characters need to know about their surroundings, and the world they are
interacting with, in order to make a particular decision. Such information could be
as follows:

•	 Position of the player: This information is used to decide whether to attack
or chase, or keep patrolling

•	 Buildings and objects nearby: This information is used to hide or take cover
•	 Player's health and its own health: This remaining information is used to

decide whether to retreat or advance
•	 Location of resources on the map in an RTS game: This information is used

to occupy and collect resources, required for constructing and producing
other units

As you can see, it could vary a lot depending on the type of game we are trying to
build. So, how do we collect that information?

Polling
One method to collect such information is polling. We can simply do if/else or
switch checks in the FixedUpdate method of our AI character. AI character just
polls the information they are interested in from the game world, does the checks,
and takes action accordingly. Polling methods works great, if there aren't too many
things to check. However, some characters might not need to poll the world states
every frame. Different characters might require different polling rates. So, usually
in larger games with more complex AI systems, we need to deploy an event-driven
method using a global messaging system.

The messaging system
AI does decision making in response to the events in the world. The events are
communicated between the AI entity and the player, the world, or the other AI
entities through a messaging system. For example, when the player attacks an
enemy unit from a group of patrol guards, the other AI units need to know about
this incident as well, so that they can start searching for and attacking the player. If
we were using the polling method, our AI entities will need to check the state of all
the other AI entities, in order to know about this incident. But with an event-driven
messaging system, we can implement this in a more manageable and scalable way.
The AI characters interested in a particular event can be registered as listeners, and
if that event happens, our messaging system will broadcast to all listeners. The AI
entities can then proceed to take appropriate actions, or perform further checks.

Chapter 1

[11]

The event-driven system does not necessarily provide faster mechanism than
polling. But it provides a convenient, central checking system that senses the world
and informs the interested AI agents, rather than each individual agent having to
check the same event in every frame. In reality, both polling and messaging system
are used together most of the time. For example, AI might poll for more detailed
information when it receives an event from the messaging system.

Flocking, swarming, and herding
Many living beings such as birds, fish, insects, and land animals perform certain
operations such as moving, hunting, and foraging in groups. They stay and hunt
in groups, because it makes them stronger and safer from predators than pursuing
goals individually. So, let's say you want a group of birds flocking, swarming around
in the sky; it'll cost too much time and effort for animators to design the movement
and animations of each bird. But if we apply some simple rules for each bird to
follow, we can achieve emergent intelligence of the whole group with complex,
global behavior.

One pioneer of this concept is Craig Reynolds, who presented such a flocking
algorithm in his SIGGRAPH paper, 1987, Flocks, Herds and Schools – A Distributed
Behavioral Model. He coined the term "boid" that sounds like "bird", but referring
to a "bird-like" object. He proposed three simple rules to apply to each unit, which
are as follows:

•	 Separation: This rule is used to maintain a minimum distance with
neighboring boids to avoid hitting them

•	 Alignment: This rule is used to align itself with the average direction of its
neighbors, and then move in the same velocity with them as a flock

•	 Cohesion: This step is used to maintain a minimum distance with the group's
center of mass

These three simple rules are all that we need to implement a realistic and a fairly
complex flocking behavior for birds. They can also be applied to group behaviors
of any other entity type with little or no modifications. We'll examine how to
implement such a flocking system in Unity in Chapter 5, Flocking.

Downloading the color images of this book

We also provide you a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will
help you better understand the changes in the output.You can
download this file from: http://www.packtpub.com/sites/
default/files/downloads/3400OT_ColoredImages.pdf

Introduction to AI

[12]

Path following and steering
Sometimes we want our AI characters to roam around in the game world, following
a roughly guided or thoroughly defined path. For example in a racing game, the
AI opponents need to navigate on the road. And the decision-making algorithms
such as our flocking boid algorithm discussed already, can only do well in making
decisions. But in the end, it all comes down to dealing with actual movements and
steering behaviors. Steering behaviors for AI characters have been in research topics
for a couple of decades now. One notable paper in this field is Steering Behaviors
for Autonomous Characters, again by Craig Reynolds, presented in 1999 at the Game
Developers Conference (GDC). He categorized steering behaviors into the following
three layers:

Hierarchy of motion behaviors

Let me quote the original example from his paper to understand these three layers:

"Consider, for example, some cowboys tending a herd of cattle out on the range.
A cow wanders away from the herd. The trail boss tells a cowboy to fetch the
stray. The cowboy says "giddy-up" to his horse, and guides it to the cow, possibly
avoiding obstacles along the way. In this example, the trail boss represents action
selection, noticing that the state of the world has changed (a cow left the herd), and
setting a goal (retrieve the stray). The steering level is represented by the cowboy
who decomposes the goal into a series of simple sub goals (approach the cow, avoid
obstacles, and retrieve the cow). A sub goal corresponds to a steering behavior for
the cowboy-and-horse team. Using various control signals (vocal commands, spurs,
and reins), the cowboy steers his horse towards the target. In general terms, these
signals express concepts like go faster, go slower, turn right, turn left, and so on.
The horse implements the locomotion level. Taking the cowboy's control signals
as input, the horse moves in the indicated direction. This motion is the result of a
complex interaction of the horse's visual perception, its sense of balance, and its
muscles applying torques to the joints of its skeleton."

Chapter 1

[13]

Then he presented how to design and implement some common and simple steering
behaviors for individual AI characters and pairs. Such behaviors include seek and
flee, pursue and evade, wander, arrival, obstacle avoidance, wall following, and
path following. We'll implement some of those behaviors in Unity in Chapter 6, Path
Following and Steering Behaviors.

A* pathfinding
There are many games where you can find monsters or enemies that follow the
player, or go to a particular point while avoiding obstacles. For example, let's take a
look at a typical RTS game. You can select a group of units and click a location where
you want them to move or click on the enemy units to attack them. Your units then
need to find a way to reach the goal without colliding with the obstacles. The enemy
units also need to be able to do the same. Obstacles could be different for different
units. For example, an air force unit might be able to pass over a mountain, while the
ground or artillery units need to find a way around it.

A* (pronounced "A star") is a pathfinding algorithm widely used in games, because
of its performance and accuracy. Let's take a look at an example to see how it works.
Let's say we want our unit to move from point A to point B, but there's a wall in the
way, and it can't go straight towards the target. So, it needs to find a way to point B
while avoiding the wall.

Top-down view of our map

Introduction to AI

[14]

We are looking at a simple 2D example. But the same idea can be applied to 3D
environments. In order to find the path from point A to point B, we need to know
more about the map such as the position of obstacles. For that we can split our
whole map into small tiles, representing the whole map in a grid format, as shown
in the following figure:

Map represented in a 2D grid

The tiles can also be of other shapes such as hexagons and triangles. But we'll just use
square tiles here, as that's quite simple and enough for our scenario. Representing the
whole map in a grid, makes the search area more simplified, and this is an important
step in pathfinding. We can now reference our map in a small 2D array.

Our map is now represented by a 5 x 5 grid of square tiles with a total of 25 tiles.
We can start searching for the best path to reach the target. How do we do this?
By calculating the movement score of each tile adjacent to the starting tile, which
is a tile on the map not occupied by an obstacle, and then choosing the tile with
the lowest cost.

There are four possible adjacent tiles to the player, if we don't consider the diagonal
movements. Now, we need to know two numbers to calculate the movement score
for each of those tiles. Let's call them G and H, where G is the cost of movement from
starting tile to current tile, and H is the cost to reach the target tile from current tile.

Chapter 1

[15]

By adding G and H, we can get the final score of that tile; let's call it F. So we'll be
using this formula: F = G + H.

Valid adjacent tiles

In this example, we'll be using a simple method called Manhattan length
(also known as Taxicab geometry), in which we just count the total number of tiles
between the starting tile and the target tile to know the distance between them.

Calculating G

Introduction to AI

[16]

The preceding figure shows the calculations of G with two different paths. We just
add one (which is the cost to move one tile) to the previous tile's G score to get the
current G score of the current tile. We can give different costs to different tiles. For
example, we might want to give a higher movement cost for diagonal movements (if
we are considering them), or to specific tiles occupied by, let's say a pond or a muddy
road. Now we know how to get G. Let's look at the calculation of H. The following
figure shows different H values from different starting tiles to the target tile. You can
try counting the squares between them to understand how we get those values.

Calculating H

So, now we know how to get G and H. Let's go back to our original example to figure
out the shortest path from A to B. We first choose the starting tile, and then determine
the valid adjacent tiles, as shown in the following figure. Then we calculate the G and
H scores of each tile, shown in the lower-left and right corners of the tile respectively.
And then the final score F, which is G + H is shown at the top-left corner. Obviously,
the tile to the immediate right of the start tile has got the lowest F score.

Chapter 1

[17]

So, we choose this tile as our next movement, and store the previous tile as its parent.
This parent stuff will be useful later, when we trace back our final path.

Starting position

From the current tile, we do the similar process again, determining valid adjacent
tiles. This time there are only two valid adjacent tiles at the top and bottom. The
left tile is a starting tile, which we've already examined, and the obstacle occupies
the right tile. We calculate the G, the H, and then the F score of those new adjacent
tiles. This time we have four tiles on our map with all having the same score, six.
So, which one do we choose? We can choose any of them. It doesn't really matter
in this example, because we'll eventually find the shortest path with whichever tile
we choose, if they have the same score. Usually, we just choose the tile added most
recently to our adjacent list. This is because later we'll be using some sort of data
structure, such as a list to store those tiles that are being considered for the next
move. So, accessing the tile most recently added to that list could be faster than
searching through the list to reach a particular tile that was added previously.

Introduction to AI

[18]

In this demo, we'll just randomly choose the tile for our next test, just to prove that it
can actually find the shortest path.

Second step

So, we choose this tile, which is highlighted with a red border. Again we examine the
adjacent tiles. In this step, there's only one new adjacent tile with a calculated F score
of 8. So, the lowest score right now is still 6. We can choose any tile with the score 6.

Third step

Chapter 1

[19]

So, we choose a tile randomly from all the tiles with the score 6. If we repeat this
process until we reach our target tile, we'll end up with a board complete with
all the scores for each valid tile.

Reach target

Now all we have to do is to trace back starting from the target tile using its parent
tile. This will give a path that looks something like the following figure:

Path traced back

Introduction to AI

[20]

So this is the concept of A* pathfinding in a nutshell, without displaying any code.
A* is an important concept in the AI pathfinding area, but since Unity 3.5, there
are a couple of new features such as automatic navigation mesh generation and
the Nav Mesh Agent, which we'll see roughly in the next section and then in more
detail in Chapter 8, Navigation Mesh. These features make implementing pathfinding
in your games very much easier. In fact, you may not even need to know about A*
to implement pathfinding for your AI characters. Nonetheless, knowing how the
system is actually working behind the scenes will help you to become a solid AI
programmer. Unfortunately, those advanced navigation features in Unity are only
available in the Pro version at this moment.

A navigation mesh
Now we have some idea of A* pathfinding techniques. One thing that you might
notice is that using a simple grid in A* requires quite a number of computations
to get a path which is the shortest to the target, and at the same time avoids the
obstacles. So, to make it cheaper and easier for AI characters to find a path, people
came up with the idea of using waypoints as a guide to move AI characters from the
start point to the target point. Let's say we want to move our AI character from point
A to point B, and we've set up three waypoints as shown in the following figure:

Waypoints

Chapter 1

[21]

All we have to do now is to pick up the nearest waypoint, and then follow its
connected node leading to the target waypoint. Most of the games use waypoints for
pathfinding, because they are simple and quite effective in using less computation
resources. However, they do have some issues. What if we want to update the
obstacles in our map? We'll also have to place waypoints for the updated map again,
as shown in the following figure:

New waypoints

Following each node to the target can mean the AI character moves in zigzag
directions. Look at the preceding figures; it's quite likely that the AI character will
collide with the wall where the path is close to the wall. If that happens, our AI
will keep trying to go through the wall to reach the next target, but it won't be able
to and it will get stuck there. Even though we can smooth out the zigzag path by
transforming it to a spline and do some adjustments to avoid such obstacles, the
problem is the waypoints don't give any information about the environment, other
than the spline connected between two nodes. What if our smoothed and adjusted
path passes the edge of a cliff or a bridge? The new path might not be a safe path
anymore. So, for our AI entities to be able to effectively traverse the whole level,
we're going to need a tremendous number of waypoints, which will be really hard to
implement and manage.

Introduction to AI

[22]

Let's look at a better solution, navigation mesh. A navigation mesh is another graph
structure that can be used to represent our world, similar to the way we did with our
square tile-based grid or waypoints graph.

Navigation mesh

A navigation mesh uses convex polygons to represent the areas in the map that an
AI entity can travel. The most important benefit of using a navigation mesh is that
it gives a lot more information about the environment than a waypoint system.
Now we can adjust our path safely, because we know the safe region in which our
AI entities can travel. Another advantage of using a navigation mesh is that we can
use the same mesh for different types of AI entities. Different AI entities can have
different properties such as size, speed, and movement abilities. A set of waypoints
is tailored for human, AI may not work nicely for flying creatures or AI controlled
vehicles. Those might need different sets of waypoints. Using a navigation mesh can
save a lot of time in such cases.

But generating a navigation mesh programmatically based on a scene, is a somewhat
complicated process. Fortunately, Unity 3.5 introduced a built-in navigation mesh
generator (Pro only feature). Since this is not a book on core AI techniques, we won't
go too much into how to really generate and use such navigation meshes. Instead,
we'll learn how to use Unity's navigation mesh for generating features to easily
implement our AI pathfinding.

Chapter 1

[23]

The behavior trees
Behavior trees are the other techniques used to represent and control the logic
behind AI characters. They have become popular for the applications in AAA games
such as Halo and Spore. Previously, we have briefly covered FSM. FSMs provide a
very simple way to define the logic of an AI character, based on the different states
and transitions between them. However, FSMs are considered difficult to scale and
re-use existing logic. We need to add many states and hard-wire many transitions,
in order to support all the scenarios, which we want our AI character to consider. So,
we need a more scalable approach when dealing with large problems. behavior trees
are a better way to implement AI game characters that could potentially become
more and more complex.

The basic elements of behavior trees are tasks, where states are the main elements
for FSMs. There are a few different tasks such as Sequence, Selector, and Parallel
Decorator. This is quite confusing. The best way to understand this is to look at an
example. Let's try to translate our example from the FSM section using a behavior
tree. We can break all the transitions and states into tasks.

Tasks

Introduction to AI

[24]

Let's look at a Selector task for this Behavior tree. Selector tasks are represented with
a circle and a question mark inside. First it'll choose to attack the player. If the Attack
task returns success, the Selector task is done and will go back to the parent node, if
there is one. If the Attack task fails, it'll try the Chase task. If the Chase task fails, it'll
try the Patrol task.

Selector task

What about the tests? They are also one of the tasks in the behavior trees. The
following diagram shows the use of Sequence tasks, denoted by a rectangle with an
arrow inside it. The root selector may choose the first Sequence action. This Sequence
action's first task is to check whether the player character is close enough to attack.
If this task succeeds, it'll proceed with the next task, which is to attack the player. If
the Attack task also returns success, the whole sequence will return success, and the
selector is done with this behavior, and will not continue with other Sequence tasks.
If the Close enough to attack? task fails, then the Sequence action will not proceed to
the Attack task, and will return a failed status to the parent selector task. Then the
selector will choose the next task in the sequence, Lost or Killed Player?.

Sequence tasks

Chapter 1

[25]

The other two common components are Parallel and Decorator. A Parallel task will
execute all of its child tasks at the same time, while the Sequence and Selector tasks
only execute their child tasks one by one. Decorator is another type of task that has
only one child. It can change the behavior of its own child's tasks, which includes
whether to run its child's task or not, how many times it should run, and so on.

We'll study how to implement a basic behavior tree system in Unity Chapter 9,
Behavior Trees. There's a free add-on for Unity called Behave in the Unity Asset Store.
Behave is a useful, free GUI editor to set up behavior trees of AI characters, and we'll
look at it in more detail later as well.

Locomotion
Animals (including humans) have a very complex musculoskeletal system
(the locomotor system) that gives them the ability to move around the body using
the muscular and skeletal systems. We know where to put our steps when climbing
a ladder, stairs, or on uneven terrain, and we know how to balance our body to
stabilize all the fancy poses we want to make. We can do all this using our bones,
muscles, joints, and other tissues, collectively described as our locomotor system.

Now put that into our game development perspective. Let's say we've a human
character who needs to walk on both even and uneven surfaces, or on small slopes,
and we have only one animation for a "walk" cycle. With the lack of a locomotor
system in our virtual character, this is how it would look:

Climbing stair without locomotion

Introduction to AI

[26]

First we play the walk animation and advance the player forward. Now the character
knows it's penetrating the surface. So, the collision detection system will pull the
character up above the surface to prevent this penetration. This is how we usually set
up the movement on an uneven surface. Even though it doesn't give a realistic look
and feel, it does the job and is cheap to implement.

Let's take a look at how we really walk up stairs. We put our step firmly on the
staircase, and using this force we pull up the rest of our body for the next step. This
is how we do it in real life with our advanced locomotor system. However, it's not so
simple to implement this level of realism inside games. We'll need a lot of animations
for different scenarios, which include climbing ladders, walking/running up stairs,
and so on. So, only the large studios with a lot of animators could pull this off in the
past, until we came up with an automated system.

With a locomotion system

Fortunately, Unity 3D has an extension that can do just that, which is a
locomotion system.

Chapter 1

[27]

Locomotion system Unity extension

This system can automatically blend our animated walk/run cycles, and adjust
the movements of the bones in the legs to ensure that the feet step correctly on
the ground. It can also adjust the original animations made for a specific speed
and direction on any surface, arbitrary steps, and slopes. We'll see how to use this
locomotion system to apply realistic movement to our AI characters in a later chapter.

Introduction to AI

[28]

Dijkstra's algorithm
The Dijkstra's algorithm, named after professor Edsger Dijkstra, who devised the
algorithm, is one of the most famous algorithms for finding the shortest paths in a
graph with non-negative edge path costs. The algorithm was originally designed to
solve the shortest path problem in the context of mathematical graph theory. And it's
designed to find all the shortest paths from a starting node to all the other nodes in
the graph. Since most of the games only need the shortest path between one starting
point and one target point, all the other paths generated or found by this algorithm
are not really useful. We can stop the algorithm, once we find the shortest path from
a single starting point to a target point. But still it'll try to find all the shortest paths
from all the points it has visited. So, this algorithm is not efficient enough to be used
in most games. And we won't be doing a Unity demo of Dijkstra's algorithm in this
book as well.

However, Dijkstra's algorithm is an important algorithm for the games that require
strategic AI that needs as much information as possible about the map to make
tactical decisions. It has many applications other than games, such as finding the
shortest path in network routing protocols.

Summary
Game AI and academic AI have different objectives. Academic AI researches try to
solve real-world problems, and prove a theory without much limited resources. Game
AI focuses on building NPCs within limited resources that seems to be intelligent
to the player. Objective of AI in games is to provide a challenging opponent that
makes the game more fun to play with. We also learned briefly about the different
AI techniques that are widely used in games such as finite state machines (FSMs),
random and probability, sensor and input system, flocking and group behaviors, path
following and steering behaviors, AI path finding, navigation mesh generation, and
behavior trees. We'll see how to implement these techniques inside the Unity engine
in the following chapters.

Finite State Machines
In this chapter, we'll learn how to use FSM in a Unity3D game, using a simple tank
game mechanic example that comes with this book. We'll be dissecting the code and
the components in this project.

In our game, the player will be able to control a tank. The enemy tanks will be
moving around in the scene with reference to four waypoints. Once the player tank
enters their visible range, they will start chasing us; and once they are close enough
to attack, they'll start shooting at our player tank. Is this simple enough? We'll
implement FSMs to control the AI of our enemy tank. First we'll use simple switch
statements to implement our tank AI states, and then we'll use a FSM framework,
which is based on and adapted from the C# FSM framework, and can be found at the
following link:

http://wiki.unity3d.com/index.php?title=Finite_State_Machine

Finite State Machines

[30]

The player's tank
Now before writing the script for our player tank, let's take a look at how we set
up the PlayerTank game object. Our Tank object is basically a simple Mesh with
a Rigidbody component, and a Box Collider component. The Tank object is not a
single Mesh, but two separate meshes, Tank and Turret. We make Turret a child
of Tank. This is to allow independent rotation of the Turret object using the mouse
movement. And at the same time, since it's the child of the Tank object, it'll follow
wherever the Tank body goes as well. Then create an empty game object to be our
SpawnPoint transform. It will be used as a reference position point, when shooting
a bullet. Also we need to assign the Player tag to our Tank object. So that's how our
Tank entity is set up. Now let's take a look at the controller class.

Tank entity

The PlayerTankController class
This class will be the primary means by which the player will control the Tank object
using it. We will be using the W, A, S, and D keys to move and steer the tank, and the
left mouse button to aim and shoot the Turret object.

Chapter 2

[31]

Unity only knows how to work with the standard QWERTY
keyboard layout. For those of us who use a different
keyboard, all we have to do is pretend that we are using a
QWERTY keyboard, and then everything will work out fine.

This book will also assume the use of a QWERTY keyboard,
as well as the use of a two-button mouse, with the left mouse
button set to the primary mouse button.

Initialization
The properties of our TankController class are as follows. First we set up our Start
function and the Update functions.

The code in the PlayerTankController.cs file is as follows:

using UnityEngine;
using System.Collections;

public class PlayerTankController : MonoBehaviour
{
 public GameObject Bullet;

 private Transform Turret;
 private Transform bulletSpawnPoint;
 private float curSpeed, targetSpeed, rotSpeed;
 private float turretRotSpeed = 10.0f;
 private float maxForwardSpeed = 300.0f;
 private float maxBackwardSpeed = -300.0f;

 //Bullet shooting rate
 protected float shootRate = 0.5f;
 protected float elapsedTime;

 void Start()
 {

 //Tank Settings
 rotSpeed = 150.0f;

 //Get the turret of the tank
 Turret = gameObject.transform.GetChild(0).transform;
 bulletSpawnPoint = Turret.GetChild(0).transform;
 }

Finite State Machines

[32]

 void Update()
 {
 UpdateWeapon();
 UpdateControl();
 }

The first child object of our Tank entity is the Turret object, and the first child of the
Turret object is the bulletSpawnPoint. The Start function finds these objects, and
then assigns them to their respective variables. We will assign our Bullet variable
later, after we create our Bullet object. Also we included the Update function, which
calls our UpdateControl and UpdateWeapon functions, which we will create soon.

Shooting bullet
Whenever the player clicks the left mouse button, we check whether the total elapsed
time since the last fire has passed the fire rate of the weapon. If it has, then we create
a new Bullet object at the SpawnPoint variable's position. This way, we can prevent
shooting continuously without any limit.

 void UpdateWeapon()
 {
 if (Input.GetMouseButtonDown(0))
 {
 elapsedTime += Time.deltaTime;
 if (elapsedTime >= shootRate)
 {
 //Reset the time
 elapsedTime = 0.0f;

 //Instantiate the bullet
 Instantiate(Bullet, bulletSpawnPoint.position,
 bulletSpawnPoint.rotation);
 }
 }
 }

Controlling the tank
The player will rotate the Turret object using the mouse. So, this part is a little bit
tricky. Our Camera will look down upon the battlefield. From that, we'll use ray
casting to determine the direction to turn, based on the mousePosition object on
the battlefield.

 void UpdateControl()
 {
 //AIMING WITH THE MOUSE
 //Generate a plane that intersects the transform's

Chapter 2

[33]

 //position with an upwards normal.
 Plane playerPlane = new Plane(Vector3.up,
 transform.position + new Vector3(0, 0, 0));

 // Generate a ray from the cursor position
 Ray RayCast =
 Camera.main.ScreenPointToRay(Input.mousePosition);

 //Determine the point where the cursor ray intersects
 //the plane.
 float HitDist = 0;

 // If the ray is parallel to the plane, Raycast will
 //return false.
 if (playerPlane.Raycast(RayCast, out HitDist))
 {
 //Get the point along the ray that hits the
 //calculated distance.
 Vector3 RayHitPoint = RayCast.GetPoint(HitDist);

 Quaternion targetRotation =
 Quaternion.LookRotation(RayHitPoint -
 transform.position);

 Turret.transform.rotation =
 Quaternion.Slerp(Turret.transform.rotation,
 targetRotation, Time.deltaTime *
 turretRotSpeed);
 }

Raycast to aim with mouse

Finite State Machines

[34]

This is how it works:

1.	 Set up a plane that intersects with the player tank with an upward normal.
2.	 Shoot a ray from screen space with the mouse position (in the preceding

diagram, it's assumed that we're looking down at the tank).
3.	 Find the point where the ray intersects the plane.
4.	 Finally, find the rotation from the current position to that intersection point.

Then we check for the key-pressed inputs, and then move/rotate the tank accordingly.

 if (Input.GetKey(KeyCode.W))
 {
 targetSpeed = maxForwardSpeed;
 }
 else if (Input.GetKey(KeyCode.S))
 {
 targetSpeed = maxBackwardSpeed;
 }
 else
 {
 targetSpeed = 0;
 }

 if (Input.GetKey(KeyCode.A))
 {
 transform.Rotate(0, -rotSpeed * Time.deltaTime,
 0.0f);
 }
 else if (Input.GetKey(KeyCode.D))
 {
 transform.Rotate(0, rotSpeed * Time.deltaTime,
 0.0f);
 }

 //Determine current speed
 curSpeed = Mathf.Lerp(curSpeed, targetSpeed, 7.0f *
 Time.deltaTime);

 transform.Translate(Vector3.forward * Time.deltaTime *
 curSpeed);
 }
}

Chapter 2

[35]

The bullet class
Next our Bullet prefab is set up with two orthogonal planes using laser-like
materials, and a Particles/Additive in the Shader field.

Bullet prefab

The code in the Bullet.cs file is as follows:

using UnityEngine;
using System.Collections;

public class Bullet : MonoBehaviour
{
 //Explosion Effect
 public GameObject Explosion;

 public float Speed = 600.0f;
 public float LifeTime = 3.0f;
 public int damage = 50;

Finite State Machines

[36]

 void Start()
 {
 Destroy(gameObject, LifeTime);
 }

 void Update()
 {
 transform.position +=
 transform.forward * Speed * Time.deltaTime;
 }

 void OnCollisionEnter(Collision collision)
 {
 ContactPoint contact = collision.contacts[0];
 Instantiate(Explosion, contact.point,
 Quaternion.identity);
 Destroy(gameObject);
 }
}

We have three properties, damage, Speed, and Lifetime for our bullet, so that the
bullet will be automatically destroyed after its lifetime.

You can see the Explosion property of the bullet is linked to the ParticleExplosion
prefab, which we're not going to discuss in detail. There's a prefab called
ParticleExplosion under the ParticleEffects folder. We just drop that prefab
into this field. This particle effect is played when the bullet is hit with something as
described in the OnCollisionEnter method. This ParticleExplosion prefab uses a
script called AutoDestruct to destroy the Explosion object automatically after a
certain amount of time.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 2

[37]

Setting up waypoints
Next, we put four Cube game objects at random places, as the waypoints inside our
scene, and name them WandarPoints.

WanderPoints

Here is what our WanderPoint object will look like:.

WanderPoint properties

Finite State Machines

[38]

One thing to note here is the need to tag those points with a tag called WandarPoint.
We'll be referencing this tag, when we try to find the waypoints from our tank AI.
As you can see in its properties, a waypoint here is just a Cube game object with the
Mesh Renderer checkbox disabled, and the Box Collider object removed. We can
even use an empty game object, since all we need from a waypoint is its position
and the transformation data. But we're using the Cube objects here, so that we can
visualize the waypoints if we want to.

The abstract FSM class
Next, we'll implement a generic abstract class that defines the methods which our
enemy tank AI class has to implement.

The code in the FSM.cs file is as follows:

using UnityEngine;
using System.Collections;

public class FSM : MonoBehaviour
{
 //Player Transform
 protected Transform playerTransform;

 //Next destination position of the NPC Tank
 protected Vector3 destPos;

 //List of points for patrolling
 protected GameObject[] pointList;

 //Bullet shooting rate
 protected float shootRate;
 protected float elapsedTime;

 //Tank Turret
 public Transform turret { get; set; }
 public Transform bulletSpawnPoint { get; set; }

 protected virtual void Initialize() { }
 protected virtual void FSMUpdate() { }
 protected virtual void FSMFixedUpdate() { }

 // Use this for initialization
 void Start ()
 {

Chapter 2

[39]

 Initialize();
 }

 // Update is called once per frame
 void Update ()
 {
 FSMUpdate();
 }

 void FixedUpdate()
 {
 FSMFixedUpdate();
 }
}

All that the enemy tanks need to know is the position of player tank, their next
destination point, and the list of waypoints to choose, while they're patrolling.
Once the player tank is in range, they will rotate their turret object and then start
shooting from the bullet spawn point at their fire rate.

The inherited classes will also need to implement the three methods: Initialize,
FSMUpdate, and FSMFixedUpdate. So, this is the abstract class, which our tank AI
will be implementing.

The enemy tank AI
Now let's look at the real code for our AI tanks. Let's call our class SimpleFSM, which
inherits from our FSM abstract class.

The code in the SimpleFSM.cs file is as follows:

using UnityEngine;
using System.Collections;

public class SimpleFSM : FSM
{

 public enum FSMState
 {
 None,
 Patrol,
 Chase,
 Attack,
 Dead,
 }

Finite State Machines

[40]

 //Current state that the NPC is reaching
 public FSMState curState;

 //Speed of the tank
 private float curSpeed;

 //Tank Rotation Speed
 private float curRotSpeed;

 //Bullet
 public GameObject Bullet;

 //Whether the NPC is destroyed or not
 private bool bDead;
 private int health;

Here, we are declaring a few variables. Our tank AI will have four different states:
Patrol, Chase, Attack, and Dead. Basically, we'll be implementing the FSM that was
described as an example in Chapter 1, Introduction to AI.

Enemy tank AI's FSM

In our Initialize method, we set up our AI tank's properties with default values.
Then we store the positions of waypoints in our local variable. We got those
waypoints from our scene using the FindGameObjectsWithTag method, trying to
find those objects with the WandarPoint tag.

 //Initialize the Finite state machine for the NPC tank
 protected override void Initialize ()
 {
 curState = FSMState.Patrol;
 curSpeed = 150.0f;
 curRotSpeed = 2.0f;

Chapter 2

[41]

 bDead = false;
 elapsedTime = 0.0f;
 shootRate = 3.0f;
 health = 100;

 //Get the list of points
 pointList =
 GameObject.FindGameObjectsWithTag("WandarPoint");

 //Set Random destination point first
 FindNextPoint();

 //Get the target enemy(Player)
 GameObject objPlayer =
 GameObject.FindGameObjectWithTag("Player");

 playerTransform = objPlayer.transform;

 if (!playerTransform)
 print("Player doesn't exist.. Please add one "+
 "with Tag named 'Player'");

 //Get the turret of the tank
 turret = gameObject.transform.GetChild(0).transform;
 bulletSpawnPoint = turret.GetChild(0).transform;
 }

Our update method that gets called every frame looks as follows:

 //Update each frame
 protected override void FSMUpdate()
 {
 switch (curState)
 {
 case FSMState.Patrol: UpdatePatrolState(); break;
 case FSMState.Chase: UpdateChaseState(); break;
 case FSMState.Attack: UpdateAttackState(); break;
 case FSMState.Dead: UpdateDeadState(); break;
 }

 //Update the time
 elapsedTime += Time.deltaTime;

 //Go to dead state is no health left
 if (health <= 0)
 curState = FSMState.Dead;
 }

We check the current state, and then call the appropriate state method. Once the
health object is zero or less than zero, we set the tank to the Dead state.

Finite State Machines

[42]

The patrol state
While our tank is in the Patrol state, we check whether it has reached the
destination point. If it has, it'll find the next destination point to follow. The
FindNextPoint method basically chooses the next random destination point
among the waypoints defined. If it's still on the way to the current destination
point, it'll check the distance with the player's tank. If the player's tank is in range
(which is 300 here), then it'll change to the Chase state. The rest of the code just
rotates the tank and moves forward.

 protected void UpdatePatrolState()
 {
 //Find another random patrol point if the current
 //point is reached
 if (Vector3.Distance(transform.position, destPos) <=
 100.0f)
 {
 print("Reached to the destination point\n"+
 "calculating the next point");

 FindNextPoint();
 }

 //Check the distance with player tank
 //When the distance is near, transition to chase state
 else if (Vector3.Distance(transform.position,
 playerTransform.position) <= 300.0f)
 {
 print("Switch to Chase Position");
 curState = FSMState.Chase;
 }

 //Rotate to the target point
 Quaternion targetRotation =
 Quaternion.LookRotation(destPos
 - transform.position);

 transform.rotation =
 Quaternion.Slerp(transform.rotation,
 targetRotation, Time.deltaTime * curRotSpeed);

 //Go Forward
 transform.Translate(Vector3.forward * Time.deltaTime *
 curSpeed);
 }
 protected void FindNextPoint()
 {

Chapter 2

[43]

 print("Finding next point");
 int rndIndex = Random.Range(0, pointList.Length);
 float rndRadius = 10.0f;
 Vector3 rndPosition = Vector3.zero;
 destPos = pointList[rndIndex].transform.position +
 rndPosition;

 //Check Range to decide the random point
 //as the same as before
 if (IsInCurrentRange(destPos))
 {
 rndPosition = new Vector3(Random.Range(-rndRadius,
 rndRadius), 0.0f, Random.Range(-rndRadius,
 rndRadius));
 destPos = pointList[rndIndex].transform.position +
 rndPosition;
 }
 }
 protected bool IsInCurrentRange(Vector3 pos)
 {
 float xPos = Mathf.Abs(pos.x - transform.position.x);
 float zPos = Mathf.Abs(pos.z - transform.position.z);

 if (xPos <= 50 && zPos <= 50)
 return true;

 return false;
 }

The chase state
Similarly while the tank is in the Chase state, it'll check its distance with the player
tank. If it's close enough, it'll switch to the Attack state. If the player tank has gone
too far, then it'll go back to the Patrol state.

 protected void UpdateChaseState()
 {
 //Set the target position as the player position
 destPos = playerTransform.position;

 //Check the distance with player tank When
 //the distance is near, transition to attack state
 float dist = Vector3.Distance(transform.position,
 playerTransform.position);

Finite State Machines

[44]

 if (dist <= 200.0f)
 {
 curState = FSMState.Attack;
 }
 //Go back to patrol is it become too far
 else if (dist >= 300.0f)
 {
 curState = FSMState.Patrol;
 }

 //Go Forward
 transform.Translate(Vector3.forward * Time.deltaTime *
 curSpeed);
 }

The attack state
If the player tank is close enough to attack our AI tank, we will rotate the turret
object to the player tank, and then start shooting. It'll go back to the Patrol state, if
the player tank is out of range.

 protected void UpdateAttackState()
 {
 //Set the target position as the player position
 destPos = playerTransform.position;

 //Check the distance with the player tank
 float dist = Vector3.Distance(transform.position,
 playerTransform.position);

 if (dist >= 200.0f && dist < 300.0f)
 {
 //Rotate to the target point
 Quaternion targetRotation =
 Quaternion.LookRotation(destPos -
 transform.position);
 transform.rotation = Quaternion.Slerp(
 transform.rotation, targetRotation,
 Time.deltaTime * curRotSpeed);

 //Go Forward
 transform.Translate(Vector3.forward *
 Time.deltaTime * curSpeed);

Chapter 2

[45]

 curState = FSMState.Attack;
 }
 //Transition to patrol is the tank become too far
 else if (dist >= 300.0f)
 {
 curState = FSMState.Patrol;
 }

 //Always Turn the turret towards the player
 Quaternion turretRotation =
 Quaternion.LookRotation(destPos
 - turret.position);

 turret.rotation =
 Quaternion.Slerp(turret.rotation, turretRotation,
 Time.deltaTime * curRotSpeed);

 //Shoot the bullets
 ShootBullet();
 }
 private void ShootBullet()
 {
 if (elapsedTime >= shootRate)
 {
 //Shoot the bullet
 Instantiate(Bullet, bulletSpawnPoint.position,
 bulletSpawnPoint.rotation);
 elapsedTime = 0.0f;
 }
 }

The dead state
If the tank has reached the Dead state, we'll have it explode.

 protected void UpdateDeadState()
 {
 //Show the dead animation with some physics effects
 if (!bDead)
 {
 bDead = true;
 Explode();
 }
 }

Finite State Machines

[46]

Here's a small function that will give a nice explosion effect. We just apply an
ExplosionForce to our rigidbody component with some random directions,
given in the following code:

 protected void Explode()
 {
 float rndX = Random.Range(10.0f, 30.0f);
 float rndZ = Random.Range(10.0f, 30.0f);
 for (int i = 0; i < 3; i++)
 {
 rigidbody.AddExplosionForce(10000.0f,
 transform.position - new Vector3(rndX, 10.0f,
 rndZ), 40.0f, 10.0f);
 rigidbody.velocity = transform.TransformDirection(
 new Vector3(rndX, 20.0f, rndZ));
 }

 Destroy(gameObject, 1.5f);
 }

Taking damage
If the tank is hit by a bullet, then the health property's value will be deducted, based
on the Bullet object's damage value.

 void OnCollisionEnter(Collision collision)
 {
 //Reduce health
 if(collision.gameObject.tag == "Bullet")
 {
 health -=collision.gameObject.GetComponent
 <Bullet>().damage;
 }
 }

Chapter 2

[47]

You can open SimpleFSM.scene in Unity, and then you should see the AI tanks
patrolling, chasing, and attacking the player. Our player tank doesn't take damage
from AI tanks, so it'll never get destroyed. But AI tanks have the health property,
and take damage from the player's bullets. So, you'll see their explosion, once their
health property reaches zero.

AI tanks in action

Using an FSM framework
The FSM framework we're going to use here is adapted from the C# FSM
framework, which can be found at unifycommunity.com. That framework is again
a part of the Deterministic Finite State Machine framework, based on Chapter 3.1 of
Game Programming Gems 1, by Eric Dybsend. We'll only be looking at the differences
between this FSM and the one we made earlier. The complete FSM can be found with
the assets that come with the book. We'll now study how the framework works and
how to use it to implement our tank AI.

The AdvanceFSM and the FSMState are the two main classes of our framework. Let's
take a look at them.

Finite State Machines

[48]

The AdvanceFSM class
The AdvanceFSM class basically manages all the FSMState(s) implemented, and
keeps updated with the transitions and the current state. So, the first thing to do
before using our framework is to declare the transitions and states that we plan to
implement for our AI tanks.

The code in the AdvancedFSM.cs file is as follows:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public enum Transition
{
 None = 0,
 SawPlayer,
 ReachPlayer,
 LostPlayer,
 NoHealth,
}

public enum FSMStateID
{
 None = 0,
 Patrolling,
 Chasing,
 Attacking,
 Dead,
}

It has a list object to store the FSMState objects, and two local variables to store the
current ID of the FSMState class, and current FSMState itself.

private List<FSMState> fsmStates;
 private FSMStateID currentStateID;
 public FSMStateID CurrentStateID
 {
 get
 {
 return currentStateID;
 }
 }

Chapter 2

[49]

 private FSMState currentState;
 public FSMState CurrentState
 {
 get
 {
 return currentState;
 }
 }

The AddFSMState and the DeleteState methods add and delete the instances
of our FSMState class in our list respectively. When the PerformTransition
method is called, it updates the CurrentState variable with the new state based
on the transition.

The FSMState class
FSMState manages the transitions to other states. It has a dictionary object called map
to store the key-value pairs of transitions and states. For example, the SawPlayer
transition maps to the Chasing state, and LostPlayer maps to the Patrolling state,
and so on.

The code in the FSMState.cs file is as follows:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public abstract class FSMState
{
 protected Dictionary<Transition, FSMStateID> map = new
 Dictionary<Transition, FSMStateID>();
...

The AddTransition and the DeleteTransition methods simply add and delete
transitions from its state-transition dictionary map object. The GetOutputState method
looks up from the map object, and returns the state based on the input transition.

The FSMState class also declares two abstract methods that its child classes need to
implement. They are as follows:

...
public abstract void Reason(Transform player, Transform npc);
public abstract void Act(Transform player, Transform npc);
...

Finite State Machines

[50]

The Reason method has to check whether the state should do the transition to
another state. And the Act method does the actual execution of the tasks for the
currentState variable such as moving towards a destination point, and then
chasing or attacking the player. Both methods require transformed data of the
player and the NPC entity, which can be obtained using this class.

The state classes
Unlike in our previous SimpleFSM example, the states for our tank AI are written
in separate classes inherited from the FSMState class as AttackState, ChaseState,
DeadState, and PatrolState, each of which implements the Reason and Act
methods. Let's take a look at the PatrolState class as an example.

The PatrolState class
It has three methods: a constructor, a Reason, and an Act.

The code in the PatrolState.cs file is as follows:

using UnityEngine;
using System.Collections;

public class PatrolState : FSMState
{

 public PatrolState(Transform[] wp)
 {
 waypoints = wp;
 stateID = FSMStateID.Patrolling;

 curRotSpeed = 1.0f;
 curSpeed = 100.0f;
 }

 public override void Reason(Transform player,
 Transform npc)
 {
 //Check the distance with player tank
 //When the distance is near, transition to chase state
 if (Vector3.Distance(npc.position, player.position) <=
 300.0f)
 {
 Debug.Log("Switch to Chase State");

Chapter 2

[51]

 npc.GetComponent
 <NPCTankController>().SetTransition(
 Transition.SawPlayer);
 }
 }

 public override void Act(Transform player, Transform npc)
 {
 //Find another random patrol point if the current
 //point is reached

 if (Vector3.Distance(npc.position, destPos) <= 100.0f)
 {
 Debug.Log("Reached to the destination" +
 point\ncalculating the next point");
 FindNextPoint();
 }

 //Rotate to the target point
 Quaternion targetRotation =
 Quaternion.LookRotation(destPos - npc.position);

 npc.rotation = Quaternion.Slerp(npc.rotation,
 targetRotation, Time.deltaTime * curRotSpeed);

 //Go Forward
 npc.Translate(Vector3.forward *
 Time.deltaTime * curSpeed);
 }
}

The constructor method takes the waypoints array and stores them in a local array,
and then it initializes properties such as movement and rotation speed. The Reason
method checks the distance between itself (the AI tank) and the player tank. If the
player tank is in range, it sets the transition ID to the SawPlayer transition using the
SetTransition method of the NPCTankController class, which looks as follows:

The code in the NPCTankController.cs file is as follows:

public void SetTransition(Transition t)
{
 PerformTransition(t);
}

Finite State Machines

[52]

It's just a wrapper method that calls the PerformTransition method of the
AdvanceFSM class. This method will update the CurrentState variable, with the one
responsible for this transition, using the Transition object, and the state-transition
dictionary map object from the FSMState class. The Act method simply updates
the AI tank's destination point, rotates the tank in that direction, and then moves
forward. Other state classes also follow this template with different reasoning and
acting procedures. We've already seen them in our previous simple FSM examples,
so we won't describe them here again. See if you can figure out how to set these
classes up on your own. If you get stuck, the assets that come with this book will
have the code for you to look at.

The NPCTankController class
Our tank AI, the NPCTankController class will inherit from AdvanceFSM. This is
how we set up the states for our NPC tanks:

...
 private void ConstructFSM()
 {

 PatrolState patrol = new PatrolState(waypoints);
 patrol.AddTransition(Transition.SawPlayer,
 FSMStateID.Chasing);
 patrol.AddTransition(Transition.NoHealth,
 FSMStateID.Dead);

 ChaseState chase = new ChaseState(waypoints);
 chase.AddTransition(Transition.LostPlayer,
 FSMStateID.Patrolling);
 chase.AddTransition(Transition.ReachPlayer,
 FSMStateID.Attacking);
 chase.AddTransition(Transition.NoHealth,
 FSMStateID.Dead);

 AttackState attack = new AttackState(waypoints);
 attack.AddTransition(Transition.LostPlayer,
 FSMStateID.Patrolling);
 attack.AddTransition(Transition.SawPlayer,
 FSMStateID.Chasing);
 attack.AddTransition(Transition.NoHealth,
 FSMStateID.Dead);

Chapter 2

[53]

 DeadState dead = new DeadState();
 dead.AddTransition(Transition.NoHealth,
 FSMStateID.Dead);

 AddFSMState(patrol);
 AddFSMState(chase);
 AddFSMState(attack);
 AddFSMState(dead);
 }

Here's the beauty of using our FSM framework. Since the states are self-managed
within their respective classes, our NPCTankController class only needs to call the
Reason and Act methods of the current active state. This eliminates the need to write
a long list of the if/else and switch statements, and bloated code. Instead, now
our states are nicely packaged in the classes of their own, making the code more
manageable as the number of states to implement, and the transitions between them
become more and more complex in bigger projects.

...
 protected override void FSMFixedUpdate()
 {
 CurrentState.Reason(playerTransform, transform);
 CurrentState.Act(playerTransform, transform);
 }

So, this is how our framework works. In summary, the main steps to use this
framework are as follows:

1.	 Declare transitions and states in the AdvanceFSM class.
2.	 Write the state classes inherited from the FSMState class, and then

implement the Reason and Act methods.
3.	 Write the custom NPC AI class inherited from AdvanceFSM.
4.	 Create states from the state classes, and then add transition and state pairs

using the AddTransition method of the FSMState class.
5.	 Add those states into the state list of the AdvanceFSM class, using the

AddFSMState method.
6.	 Call the CurrentState variable's Reason and Act methods in the game

update cycle.

You can play around with the AdvancedFSM.scene in Unity. It'll run in the same
way as our previous SimpleFSM example. But now the code and classes are more
organized and manageable.

Finite State Machines

[54]

Summary
In this chapter, we learned how to implement state machines in Unity3D based on
a simple tank game. We first looked at how to implement FSM in the simplest way,
using the switch statements. Then we studied how to use a framework to make the
AI implementation easier to manage and extend.

In the next chapter, we will take a look at randomness and probability and how we
can use it to make the outcome of our games more unpredictable.

Random and Probability
In this chapter, we are going to look at how the concepts of probability can be
applied to game AI. This chapter will be more about generic game AI development
techniques in random and probability topics, and less about Unity3D in particular.
Moreover, they can be applied to any game development middleware or technology
framework. We'll be using mono C# in Unity3D for the demos mainly using the
console to output data, and won't address much about the specific features of the
Unity3D engine and the editor itself.

Game developers use probability or the confidence factor to add a little uncertainty
to the behaviors of AI characters, as well as to the game world. This makes the
artificial intelligence system a bit unpredictable of a certain outcome, and can
provide the players with a more exciting and challenging experience.

Let us take an example of a typical soccer game. One of the rules of a soccer game
is to award a direct free kick if one player is fouled while trying to possess the ball
from the opposing team. Now, instead of giving a foul and a free kick all the time
whenever that foul happens, the game developer can apply a probability so that
only 98 percent of all the fouls will be rewarded with a direct free kick. As a result,
most of the time, the player will get a direct free kick. But when that remaining two
percent happens, like you have hit the other player and you know it's going to be a
free kick but the referee passes it, it can provide a certain emotional feedback to the
players from both the teams (assuming that you are playing against another human).
The other player would feel angry and disappointed, while you'd feel lucky and
satisfied. In the end, the referees are human, and like all other humans, they might
not be 100 percent correct all the time.

So we use probability in a game AI to make the game and characters livelier and
seem more realistic, by not making the same decision or taking the same action again
and again. There are many topics to discuss and debate in the probability domain. So
this small single chapter will only be able to address the basic concepts, and how we
can implement some of them in Unity3D.

Random and Probability

[56]

In this chapter, we will be going over random and probability. We will be creating
a simple dice game. We will also give some application examples of probability and
dynamic AI. Finally, we will finish the chapter with a simple slot machine, and then
add on more probability features.

Random
Probability is basically a measure of how likely it is that a particular condition
or a favorable outcome can be achieved among all the possible outcomes, if
selected randomly. So speaking of probability, one can't neglect the importance of
randomness. Random number generation (RNG) is very important when we need
to produce unpredictable results. The simplest and probably the oldest technique
would be throwing a dice to generate a random value between one and six. The
random numbers are produced computationally by a pseudorandom number
generator (PRNG), and they determine the same sequence of random numbers
based on the initial seed value. So, if we theoretically know the seed value, we can
regenerate the same sequence of random numbers again, and thus they are not
considered as truly random. The seed value is usually generated from the state of
the computer system, such as the elapsed time in milliseconds since the computer
starts running. Some RNGs are more random than others. If we were creating an
encryption program, we would want to look into a more random RNG. For the
games we will be making, the RNG that comes with Unity will suffice. Now let's see
how we can generate random numbers in Unity3D.

Random class
The Unity3D script has a Random class to generate random data. Two of the most
widely used properties would be seed and value:

static var seed : int

You can set this seed property of the Random class to seed the random number
generator. Usually, we will not want to seed the same value again and again, as this
will result in the same predictable sequence of random numbers being generated.
One of the reasons for keeping the same seed value is for testing purposes:

static var value : float

You can read the Random.value property to get a random number between 0.0
(inclusive) and 1.0 (inclusive). Both 0.0 and 1.0 may be returned by this property.
Another class method that could be quite handy is the Range method.

static function Range (min : float, max : float) : float

Chapter 3

[57]

The Range method can be used to generate a random number from a range. When
given an integer value, it returns a random integer number between min
(inclusive) and max (exclusive). This means that a zero may be returned, but never
a one. If you pass in float values for the range, it'll return a random float number
between min (inclusive) and max (inclusive). Take note of the exclusive and inclusive
parts. Since the integer random value is exclusive of max in range, we'll need to pass
in n+1 as the max range, where n is our desired maximum random integer. However,
for the float random value, the max value in range is inclusive.

Simple random dice game
Let's set up a very simple dice game in a new scene, where a random number is
being generated between one and six, and checked against the input value. The
player will win, if the input value matches the dice result generated randomly as
shown in the following DiceGame.cs file:.

 using UnityEngine;
 using System.Collections;

public class DiceGame : MonoBehaviour {

 public string inputValue = "1";

 void OnGUI() {
 GUI.Label(new Rect (10, 10, 100, 20), "Input: ");
 inputValue = GUI.TextField(new Rect(120, 10, 50, 20),
 inputValue, 25);
 if (GUI.Button(new Rect(100,50,50,30),"Play")) {
 Debug.Log("Throwing dice...");
 Debug.Log("Finding random between 1 to 6...");
 int diceResult = Random.Range(1,7);
 Debug.Log("Result: " + diceResult);
 if (diceResult == int.Parse(inputValue)) {
 guiText.text = "DICE RESULT: " +
 diceResult.ToString() + "\r\nYOU WIN!";
 }
 else {
 guiText.text = "DICE RESULT: " +
 diceResult.ToString() + "\r\nYOU LOSE!";
 }
 }
 }
}

Random and Probability

[58]

We implement this simple dice game in the OnGUI() method as we want to render
some GUI controls such as a label, a text field to enter the input value, and a button
to play. The guiText object will be used to display the result. Add a guiText to
the scene, navigate to Game Object | Create Other | GUI Text, and add our
script to the object. The output that you get if you run the game is shown in the
following screenshot:

Simple dice game results

This is a purely random game, and there's no modified probability involved. Each
side of the surface of the dice has an equal chance to be picked.

Definition of probability
There are many ways to define probability based on the situations and the domain
context. The most commonly used notion of probability is to refer the possibility of an
event to successfully occur. The probability of an event A to occur is usually written
as P(A). To calculate P(A) we need to know the number of ways or times it can occur
(n), and the total number of times all the other possible events can occur (N).

So the probability of an event A can be calculated as

P(A) = n / N

P(A) is the probability of the event A to occur, and it's equal to the number of ways
that A can occur (n) out of the number of all outcomes (N). If P(A) is the probability
of the event A to successfully occur, then the probability of the event A will not occur,
or the probability of failure for event A is equal to:

Pf (A) = 1 – P.(A)

The range of probability is a decimal number from zero to one. Probability of zero
means there's no chance for the desired event to occur, and one means that it's 100
percent certain for the event to occur. And P(A) + Pf (A) must equal to one. Since
the probability values range from zero to one, we can get the percentage value by
multiplying by 100.

Chapter 3

[59]

Independent and related events
Another important concept in probability is whether the chance of a particular event
to occur depends on any other event in some ways or not. For example, throwing
a six-sided dice twice are two independent events. Each time you throw a dice, the
probability of each side to turn up is one-sixth. On the other hand, drawing two
cards from the same deck are two related events. If you drew a Jack in the first event,
there's one less chance that you can get another Jack in the second event.

Conditional probability
When throwing two six-sided dices at the same time, what is the probability of
getting a one on both the dices? Here there are two conditional events; to get one
on the first dice, and also to get one on the second dice. They rely on each other to
calculate the probability of getting one on both the dices. The probability to get one
on the first dice is one-sixth, and also for the second dice is one-sixth. So the answer
would be one-sixth times one-sixth which is 1/36, or a 2.8 percent chance.

Now let's consider another example, what's the probability that the sum of the
numbers show up on two dices is equal to two? Since there's only one way to get
this sum, which is one and one, the probability is still the same as getting the same
number on both dices. In that case it would be still 1/36.

But how about getting the sum of the numbers that show up on the two dices to
seven? As you can see, there are a total of six possible chances to get a total of seven,
from the following table:

Dice 1 Dice 2

1 6

2 5

3 4

4 3

5 2

6 1

So the probability of getting a sum of seven from two dices is 6/36 or one-sixth,
which is 16.7 percent. These are some examples of conditional probability, where two
events rely on each other to achieve a desirable outcome.

Random and Probability

[60]

A loaded dice
Now let's assume we haven't been that honest, and our dice is loaded so that the
side of the number six has a double chance of landing facing upward. For a six-sided
dice, the probability of each side facing upward is approximately one-sixth (0.17).
Since we doubled the chance of getting six, we need to double the probability of
getting six, let's say up to 0.34. And the probability of the remaining five sides will
be reduced to 0.132.

The simplest way to implement this loaded dice algorithm is to generate a random
value between 1 and 100. Check if the random value is in a range of one to 35. If
so return 6, otherwise get a random dice value between one and five, since these
values have the same probability of 0.13.

So here's our throwLoadedDice() method:

 int throwDiceLoaded() {
 Debug.Log("Throwing dice...");
 int randomProbability = Random.Range(1,101);
 int diceResult = 0;
 if (randomProbability < 36) {
 diceResult = 6;
 }
 else {
 diceResult = Random.Range(1,5);
 }
 Debug.Log("Result: " + diceResult);
 return diceResult;
 }

If we test our new loaded dice algorithm by throwing the dice multiple times, you'll
notice that the value 6 yields more than usual. Here is our new OnGUI() function:

 void OnGUI() {
 GUI.Label(new Rect (10, 10, 50, 20), "Input: ");
 inputValue = GUI.TextField(new Rect(60, 10, 50, 20),
 inputValue, 25);
 if (GUI.Button(new Rect(60,40,50,30),"Play")) {
 int totalSix = 0;
 for (int i=0;i<10;i++) {
 int diceResult = throwDiceLoaded();
 if (diceResult == 6) totalSix++;
 if (diceResult == int.Parse(inputValue)) {
 guiText.text = "DICE RESULT: " +
 diceResult.ToString()+"\r\nYOU WIN!";
 }

Chapter 3

[61]

 else {
 guiText.text = "DICE RESULT: " +
 diceResult.ToString()+"\r\nYOU LOSE!";
 }
 }
 Debug.Log("Total of six: " + totalSix.ToString());
 }
 }

We throw the dice ten times in our OnGUI() method, and here I got 6 at least two to
three times (which is approximately 33 percent of ten times). But, if you normally
throw the dice without any loaded probability it's more possible that you won't get
any 6 at all. Keep in mind that the value 6 is only favored for 35 percent, and thus
there's still a chance that you will never get a 6 out of ten dice throws, though it's
quite unlikely.

Character personalities
We can also use different probabilities to specify the in-game characters' specialties.
Let's pretend we designed a game proposal for a population management game for
the local government. We need to address and simulate issues like taxation versus
global talent attraction, immigration versus social cohesion, and so on. We have three
types of characters in our proposal, namely, workers, scientists, and professionals.
Their efficiencies in performing the particular tasks are defined in the following table:

Characters Construction R&D Corporate Jobs

Worker 95 2 3

Scientist 5 85 10

Professional 10 10 80

Let us take a look at how we can implement this mechanic. Let's say the player needs
to build new houses to accommodate the increased population. A house construction
would require 1,000 units of workload to finish. We use the value specified earlier
as the workload that can be done per second per unit type for a particular task. So
if you're building a house with one worker that will only take about 10 seconds to
finish the construction (1000/95) whereas it'll take more than three minutes if you
are trying to build with the scientists (1000/5 = 200 seconds). The same will be
true for other tasks such as R&D and corporate jobs. These factors can be adjusted/
enhanced later as the game progresses, making some of the early level tasks become
simpler, and takes less time.

Random and Probability

[62]

Then we introduce special items that could be discovered by the particular unit
type. Now, we don't want to give these items every time a particular unit has done
its tasks. Instead we want to reward the player as a surprise. So we associate the
probability of finding such items according to the unit type, as described in the
following table:

Special items Worker Scientist Professional

Raw materials 0.3 0.1 0.0

New tech 0.0 0.3 0.0

Bonus 0.1 0.2 0.4

The preceding table means there's a 30 percent chance that a worker will find some
raw materials, and a 10 percent chance to earn bonus income whenever they have
built a factory or a house. This allows the players to anticipate the possible upcoming
rewards, once they've done some tasks. This can make the game more fun because
the players will not know the outcome of the event.

FSM with probability
We discussed Finite State Machines (FSM) in Chapter 2, Finite State Machines, using
both simple switch statements as well as using the FSM framework. The decision
to choose which state to execute was purely based on true or false value of a given
condition. Remember the following FSM of our AI controlled tank entity?

Tank AI FSM

Chapter 3

[63]

To make the AI more interesting, and a little bit unpredictable, we can give our tank
entity some options with probabilities to choose from, instead of doing the same
thing whenever a certain condition is met. For example, in our earlier FSM, our AI
tank will chase the player tank once the player is in its line of sight. Instead we can
give our AI another state, such as flee with some probability such as 50 percent as
shown in the following figure:

FSM using probability

Now instead of chasing every time, the AI tank spots the player; there's a 50 percent
chance that it'll flee, and maybe report to the headquarters or something. We can
implement this mechanic the same way we did with our previous dice example. First
we need to generate a random value between one and 100, and see if the value lies
between one and 50 or 51 and 100. (Or we could randomly choose between zero and
one.) Then choose a state accordingly. The other way to implement this is to fill an
array with these options in proportion to their respective probabilities. Then pick a
random state from this pool as if you were drawing a lottery winner. Let's see how to
use this technique as shown in the following FSM.cs file:

using UnityEngine;
using System.Collections;

public class FSM : MonoBehaviour {
 public enum FSMState {
 Chase,
 Flee
 }

 public int chaseProbabiilty = 50;
 public int fleeProbabiilty = 50;

 //a poll to store the states according to their
 //probabilities
 public ArrayList statesPoll = new ArrayList();

Random and Probability

[64]

 void Start () {
 //fill the array
 for (int i = 0; i < chaseProbabiilty; i++) {
 statesPoll.Add(FSMState.Chase);
 }
 for (int i = 0; i < fleeProbabiilty; i++) {
 statesPoll.Add(FSMState.Flee);
 }
 }

 void OnGUI() {
 if (GUI.Button(new Rect(10,10,150,40),
 "Player on sight")) {
 int randomState = Random.Range(0, statesPoll.Count);
 Debug.Log(statesPoll[randomState].ToString());
 }
 }
}

In our OnGUI() method, when you click on the mouse button, we just choose one
random item from our statesPoll array. Obviously, the one with more entries in
the poll will have a higher chance to be selected. Try it out.

Dynamic AI
We can also use probability to specify the intelligence levels of AI characters, and the
global game settings. This can in turn affect the overall difficulty level of the game,
and keep it challenging and interesting enough to players. As described in the book,
The Art of Game Design, Jesse Schell, Morgan Kaufmann publications, players will only
continue to play our game if we keep them in their flow channel.

The Flow Channel

Chapter 3

[65]

The players will feel anxious and get disappointed if we present tough challenges for
them to solve before they have the necessary skills. On the other hand, once they've
mastered the skills, and if we continue to keep the game at the same pace, then they
will get bored. The grey area that can keep the players engaged for a long time is
between these two extremes of hard and easy, which the original author referred
to as the flow channel. To keep the players in the flow channel, the game designers
need to feed the challenges and missions that match with the progressive skills that
the players have acquired over time. However, it is not an easy task to find a value
that works for all players, since the pace of learning and the expectations can be
different individually.

One way to tackle this problem is to collect the player attempts and results
during the game-play sessions, and to adjust the probability of the opponent's
AI accordingly. Though this approach is supposed to help the games to be more
engaging, there are many other players who don't like this approach, since this
method takes away the pride and satisfaction of finishing a hard game. After all,
beating a very hard boss AI character despite all the challenges can be much more
rewarding and satisfying than winning the game because the AI is dumb. They
would feel much worse if they find out that the AI becomes dumb because they don't
have enough skills to match. So we must be careful about when we want to apply
this technique in our games.

Demo slot machine
In this final demo, we'll design and implement a slot machine game with 10 symbols
and three reels. Just to make it simple we'll just use the numbers from zero to nine as
our symbols. Many slot machines would use fruit shapes and other simple shapes,
such as bells, stars, and letters. Some other slot machines usually use a specific theme
based on popular movies or TV programs as a franchise. Since there are 10 symbols
and three reels, that's a total of 1,000 (10^3) possible combinations.

Random slot machine
This random slot machine demo is similar to our previous dice example. This time
we are going to generate three random numbers for three reels. The only payout will
be when you get three of the same symbols on the payline. To make it simpler, we'll
only have one line to play against in this demo. And if the player wins, the game will
return 500 times the bet amount.

Random and Probability

[66]

We'll set up our scene with four GUI text objects to represent the three reels, and the
result message.

Our GUI text objects

This is how our new script looks, as shown in the following SlotMachine.cs file::

using UnityEngine;
using System.Collections;

public class SlotMachine : MonoBehaviour {

 public float spinDuration = 2.0f;
 public int numberOfSym = 10;
 private GameObject betResult;

 private bool startSpin = false;
 private bool firstReelSpinned = false;
 private bool secondReelSpinned = false;
 private bool thirdReelSpinned = false;

 private string betAmount = "100";

 private int firstReelResult = 0;
 private int secondReelResult = 0;
 private int thirdReelResult = 0;

 private float elapsedTime = 0.0f;

 //Use this for initialization
 void Start () {
 betResult = gameObject;
 betResult.guiText.text = "";
 }

Chapter 3

[67]

 void OnGUI() {
 GUI.Label(new Rect(200, 40, 100, 20), "Your bet: ");
 betAmount = GUI.TextField(new Rect(280, 40, 50, 20),
 betAmount, 25);
 if (GUI.Button(new Rect(200, 300, 150, 40),
 "Pull Liver")) {
 Start();
 startSpin = true;
 }
 }

 void checkBet() {
 if (firstReelResult == secondReelResult &&
 secondReelResult == thirdReelResult) {
 betResult.guiText.text = "YOU WIN!";
 }
 else {
 betResult.guiText.text = "YOU LOSE!";
 }
 }

 //Update is called once per frame
 void FixedUpdate () {
 if (startSpin) {
 elapsedTime += Time.deltaTime;
 int randomSpinResult = Random.Range(0,
 numberOfSym);
 if (!firstReelSpinned) {
 GameObject.Find("firstReel").guiText.text =
 randomSpinResult.ToString();
 if (elapsedTime >= spinDuration) {
 firstReelResult = randomSpinResult;
 firstReelSpinned = true;
 elapsedTime = 0;
 }
 }
 else if (!secondReelSpinned) {
 GameObject.Find("secondReel").guiText.text =
 randomSpinResult.ToString();
 if (elapsedTime >= spinDuration) {
 secondReelResult = randomSpinResult;
 secondReelSpinned = true;
 elapsedTime = 0;
 }

Random and Probability

[68]

 }
 else if (!thirdReelSpinned) {
 GameObject.Find("thirdReel").guiText.text =
 randomSpinResult.ToString();
 if (elapsedTime >= spinDuration) {
 thirdReelResult = randomSpinResult;
 startSpin = false;
 elapsedTime = 0;
 firstReelSpinned = false;
 secondReelSpinned = false;
 checkBet();
 }
 }
 }
 }
}

Attach the script to our betResult guiText object, and then position the guiText
element on the screen. We have a button called Pull Lever in the OnGUI() method
that will set the startSpin flag to true when clicked. And in our FixedUpdate()
method we generate a random value for each reel if the startSpin is true. Finally,
once we've got the value for the third reel, then we reset the startSpin to false.
While we are getting the random value for each reel, we also keep a track of how
much time has elapsed, since the player pulled the lever. Usually in the real world
slot machines, each reel would take three to five seconds before landing the result.
Hence, we are also taking some time as specified in spinDuration before showing
the final random value. If you play the scene and click on the Pull Lever button, you
should see the final result as shown in the following screenshot:

Random slot game in action

Chapter 3

[69]

Since your chance of winning is one out of 100, it becomes boring as you lose several
times consecutively. And of course if you've ever played a slot machine, this is not
how it works, or at least not anymore. Usually you can have several wins during your
play. Even though these small wins don't recoup your principal bet, and in the long
run most of the players go broke, the slot machines would render winning graphics
and winning sounds, which researchers referred to as losses disguised as wins.

So instead of just one single way to win—winning the jackpot—we'd like to modify
the rules a bit so that it pays out smaller returns during the play session.

Weighted probability
Real slot machines have something called a Paytable and Reel Strips (PARS) sheet,
which is like the complete design document of the machine. The PARS sheet is used
to specify what the payout percentage is, what the winning patterns, and what their
prizes are, and so on. Obviously the number of the payout prizes and the frequencies
of such wins need to be carefully selected, so that the house (slot machine) can collect
the fraction of the bets over time, while making sure to return the rest to the players to
make the machine attractive to play. This is known as payback percentage or return
to player (RTP). For example, a slot machine with a 90 percent RTP means that over
time the machine will return an average of 90 percent of all the bets to the players.

In this demo, we'll not be focusing on choosing the optimal value for the house to
yield specific wins over time nor maintaining a particular payback percentage, but
rather to demonstrate weighting probability to specific symbols, so that they show
up more times than usual. So let's say we'd like to make the symbol zero to appear
20 percent more than by chance on the first and third reel, and return a small payout
of half of the bet. In other words, a player will only lose half of their bet if they got
zero symbols on the first and third reels, essentially disguising a loss as a small win.
Currently, the zero symbol has a probability of 1/10 (0.1) or 10 percent probability
to occur. Now we'll make it 30 percent for zero to land on the first and third reels as
shown in the following SlotMachineWeighted.cs file:

using UnityEngine;
using System.Collections;

public class SlotMachineWeighted : MonoBehaviour {
 public float spinDuration = 2.0f;
 public int numberOfSym = 10;
 public GameObject betResult;

 private bool startSpin = false;
 private bool firstReelSpinned = false;

Random and Probability

[70]

 private bool secondReelSpinned = false;
 private bool thirdReelSpinned = false;

 private int betAmount = 100;

 private int creditBalance = 1000;
 private ArrayList weightedReelPoll = new ArrayList();
 private int zeroProbability = 30;

 private int firstReelResult = 0;
 private int secondReelResult = 0;
 private int thirdReelResult = 0;

 private float elapsedTime = 0.0f;

New variable declarations are added, such as zeroProbability to specify the
probability percentage of the zero symbol to land on the first and third reels. The
weightedReelPoll array list will be used to fill with all the symbols (zero to nine)
according to their distribution, so that we can later pick one randomly from the poll
like we did in our earlier FSM example. And then we initialize the list in our Start()
method as shown in the following code:

 void Start () {
 betResult = gameObject;
 betResult.guiText.text = "";
 for (int i = 0; i < zeroProbability; i++) {
 weightedReelPoll.Add(0);
 }
 nt remainingValuesProb = (100 - zeroProbability)/9;
 for (int j = 1; j < 10; j++) {
 for (int k = 0; k < remainingValuesProb; k++) {
 weightedReelPoll.Add(j);
 }
 }
 }

 void OnGUI() {
 GUI.Label(new Rect(150, 40, 100, 20), "Your bet: ");
 betAmount = int.Parse(GUI.TextField(new Rect(220, 40,
 50, 20), betAmount.ToString(), 25));
 GUI.Label(new Rect(300, 40, 100, 20), "Credits: " +
 creditBalance.ToString());
 if (GUI.Button(new Rect(200,300,150,40),"Pull Lever")) {
 betResult.guiText.text = "";
 startSpin = true;
 }
 }

Chapter 3

[71]

And the following is our revised checkBet() method. Instead of just one jackpot win,
we are now considering five conditions: jackpot, loss disguised as win, near miss, any
two symbols matched on the first and third row, and of course the lose condition:

 void checkBet() {
 if (firstReelResult == secondReelResult &&
 secondReelResult == thirdReelResult) {
 betResult.guiText.text = "JACKPOT!";
 creditBalance += betAmount * 50;
 }
 else if (firstReelResult ==0 && thirdReelResult ==0) {
 betResult.guiText.text = "YOU WIN" +
 (betAmount/2).ToString();
 creditBalance -= (betAmount/2);
 }
 else if (firstReelResult == secondReelResult) {
 betResult.guiText.text = "AWW... ALMOST JACKPOT!";
 }
 else if (firstReelResult == thirdReelResult) {
 betResult.guiText.text = "YOU WIN" +
 (betAmount*2).ToString();
 creditBalance -= (betAmount*2);
 }
 else {
 betResult.guiText.text = "YOU LOSE!";
 creditBalance -= betAmount;
 }
 }

In the checkBet() method, we designed our slot machine to return 50 times if they
hit the jackpot, only to lose 50 percent of their bet, if the first and third reels are zero,
and two times if the first and third reels are matched with any other symbol. And
we generate values for the three reels in the FixedUpdate() method as shown in the
following code:

 void FixedUpdate () {
 if (!startSpin) {
 return;
 }
 elapsedTime += Time.deltaTime;
 int randomSpinResult = Random.Range(0,
 numberOfSym);
 if (!firstReelSpinned) {
 GameObject.Find("firstReel").guiText.text =
 randomSpinResult.ToString();
 if (elapsedTime >= spinDuration) {
 int weightedRandom = Random.Range(0,
 weightedReelPoll.Count);
 GameObject.Find("firstReel").guiText.text =

Random and Probability

[72]

 weightedReelPoll[weightedRandom].ToString();
 firstReelResult =
 (int)weightedReelPoll[weightedRandom];
 firstReelSpinned = true;
 elapsedTime = 0;
 }
 }
 else if (!secondReelSpinned) {
 GameObject.Find("secondReel").guiText.text =
 randomSpinResult.ToString();
 if (elapsedTime >= spinDuration) {
 secondReelResult = randomSpinResult;
 secondReelSpinned = true;
 elapsedTime = 0;
 }
 }

For the first reel, during the spinning period, we really show the real random
values. But once the time is up, we choose the value from our poll that is already
populated with symbols according to the probability distributions. So our zero
symbol would have 30 percent more chance of occurring than the rest, as shown
in the following screenshot:

Loss disguised as a win

Actually the player is losing on his bets, if you get two zero symbols on the first and
third reel. But we make it seem like a win. It's just a lame message here, but if we
can combine it with nice graphics; maybe with fireworks, and nice winning sound
effects, this can really work, and attract players to bet more, and pull that lever again
and again.

Chapter 3

[73]

Near miss
If the first and second reels return the same symbol, then we have to provide the
near miss effect to the players by returning the random value to the third reel close to
the second one. We can do this by checking the third random spin result first. If the
random value is the same as the first and second results, then this is a jackpot, and
we shouldn't alter the result. But if it's not, then we should modify the result so that
it is close enough to the other two. Check the comments in the following code:

 else if (!thirdReelSpinned) {
 GameObject.Find("thirdReel").guiText.text =
 randomSpinResult.ToString();
 if (elapsedTime < spinDuration) {
 return;
 }
 if ((firstReelResult == secondReelResult)
 && randomSpinResult != firstReelResult) {
 randomSpinResult = firstReelResult - 1;
 if (randomSpinResult < firstReelResult)
 randomSpinResult = firstReelResult - 1;
 if (randomSpinResult > firstReelResult)
 randomSpinResult = firstReelResult + 1;
 if (randomSpinResult < 0) randomSpinResult = 9;
 if (randomSpinResult > 9) randomSpinResult = 0;
 GameObject.Find("thirdReel").guiText.text =
 randomSpinResult.ToString();
 thirdReelResult = randomSpinResult;
 }
 else {
 int weightedRandom = Random.Range(0,
 weightedReelPoll.Count);
 GameObject.Find("thirdReel").guiText.text =
 weightedReelPoll[weightedRandom].ToString();
 thirdReelResult =
 (int)weightedReelPoll[weightedRandom];
 }
 startSpin = false;
 elapsedTime = 0;
 firstReelSpinned = false;
 secondReelSpinned = false;
 checkBet();
 }
 }
}

Random and Probability

[74]

And if that "near miss" happens, you should see it as shown in the
following screenshot:

A near miss

We can go even further by adjusting the probability in real-time based on the bet
amount. But that'd be too creepy. Another thing we could add to our game is a check
to make sure the player can't bet more money than they already have. Also, we could
add a game over message that appears when the player has bet all their money.

Summary
In this chapter, we learned about the applications of probability in the game AI
design. We experimented with some of the techniques by implementing them in
Unity3D. As a bonus, we also learnt about the basics of how a slot machine works,
and implemented a simple slot machine game using Unity3D. Probability in game
AI is about making the game and characters seem more realistic by adding some
uncertainty, so that the players cannot predict something for sure. One of the
common usages and definitions of probability is to measure the possibility of a
desired event to occur out of all the other possible events. A good reference to
further study the advanced techniques on probability in game AI, such as decision
making under uncertainty using Bayesian techniques, would be the AI for Game
Developers David M. Bourg, Glenn Seeman, O'Reilly. In the next chapter, we will take
a look at implementing sensors, and how they can be used to make our AI aware
of its surroundings.

Implementing Sensors
This is another short chapter on how to implement AI behaviors using the concept of
a sensory system similar to what living entities have. As we have discussed earlier,
a character AI system needs to have awareness of its environment, awareness such
as where the obstacles are, where the enemy it's looking for is, if the enemy is visible
in the player's sight, and others. The quality of artificial intelligence of our NPCs
completely depends on the information it can get from the environment. Based on
that information, the AI characters will decide which logic to execute. If there's not
enough information for the AI, our AI characters can show strange behaviors, such
as choosing the wrong places to take cover, idling, and looping strange actions, and
not knowing what decision to make. Search for "AI glitches" on YouTube, and you'll
find some funny behaviors of AI characters even in AAA games.

We can detect all the environment parameters and check against our predetermined
values if we want. But using a proper design pattern will help us maintain code and
thus will be easy to extend. This chapter will introduce such a design pattern that we
can use to implement sensory systems. We will be going over what a sensory system
is, and how to make such a system in Unity. We will then build a demo where we
can see our sensory system in action.

Implementing Sensors

[76]

Basic sensory systems
The AI sensory systems emulate senses such as perspectives, sounds, and even
scents to track and identify objects. In game AI sensory systems, the agents will
have to examine the environment and check for such senses periodically based
on their particular interest.

The concept of a basic sensory system is that there will be two components: Aspect
and Sense. Our AI characters will have senses, such as perception, smell, and
touch. These senses will look out for specific aspects such as enemy and bandit. For
example, you could have a patrol guard AI with a perception sense that's looking for
other game objects with an enemy aspect. Or it could be a zombie entity with a smell
sense looking for other entities with an aspect defined as brain.

For our demo, this is basically what we are going to implement: a base interface
called Sense that will be implemented by other custom senses. In this chapter, we'll
implement perspective and touch senses. Perspective is what animals use to see the
world around them. If our AI character sees an enemy, we want to be notified so that
we can take some action. Likewise, with Touch, when an enemy gets too close, we
want to be able to sense that; almost as if our AI character can hear that the enemy is
nearby. Then we'll write a minimal Aspect class that our senses will be looking for.

RAIN{ONE} is an AI plugin for Unity3D that supports such
a sensory system with not much coding required.

The following quote on RAIN has been taken from http://rivaltheory.com/
product:

RAIN raises the bar for AI in Unity by giving in-game characters the ability to
sense the world, pathfind, execute sophisticated behavior trees, and modify actions
based on personality traits. All of this can even be accomplished with little to no
coding experience.

Scene setup
Let's get started setting up our scene. First let's create a few walls to block the line-
of-sight from our AI character to the enemy. These will be short but wide cubes
grouped under an empty game object called Obstacles. Next, we add a plane to be
used as a floor. Then, we add a directional light, so we can see what is going on in
our scene.

http://rivaltheory.com/product
http://rivaltheory.com/product

Chapter 4

[77]

We will be going over this next part in detail throughout the chapter, but basically
we will use a simple tank model for our player, and a simple cube for our AI
character. We will also have a Target object to show us where the tank will move to
in our scene. Our scene hierarchy will look similar to the following screenshot:

How our hiearchy is set up

Now we will position the tank, AI character, and walls randomly around in our
scene. Increase the size of the plane to something that looks good. Fortunately, in this
demo, our objects float, so nothing will fall off the plane. Also be sure to adjust the
camera so that we can have a clear view of the following scene:

Where our tank and player will wander in

Now that we have the basics set up, we'll look at how to implement the tank, AI
character, and aspects for our player character.

Implementing Sensors

[78]

Player tank and aspect
Our Target object is a simple sphere object with the mesh render disabled. We have
also created a point light and made it a child of our Target object. Make sure the
light is centered, or it will not be very helpful for us.

Look at the following code in the Target.cs file:

using UnityEngine;
using System.Collections;

public class Target : MonoBehaviour {

 public Transform targetMarker;

 void Update () {
 int button = 0;
 //Get the point of the hit position when the mouse is being
// clicked.
 if (Input.GetMouseButtonDown(button)) {
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
 RaycastHit hitInfo;
 if (Physics.Raycast(ray.origin, ray.direction, out hitInfo)) {
 Vector3 targetPosition = hitInfo.point;
 targetMarker.position = targetPosition;
 }
 }
 }
}

Attach this script to our Target object. The script detects the mouse click event and
then, using the raycasting technique, detects the mouse click point on the plane in
the 3D space. After that it updates the Target object to that position in our scene.

Chapter 4

[79]

Player tank
Our player tank is the simple tank model we used in the previous chapter with a
non-kinematic rigid body component attached. The rigid body component is needed
in order to generate trigger events whenever we do collision detection with any AI
characters. The first thing we need to do is to assign the tag Player to our tank.

The tank is controlled by PlayerTank script, which we will create in a moment. This
script retrieves the target position on the map, and updates its destination point and
the direction accordingly.

The code in the PlayerTank.cs file is shown as follows:

using UnityEngine;
using System.Collections;

public class PlayerTank : MonoBehaviour {
 public Transform targetTransform;
 private float movementSpeed, rotSpeed;

 void Start () {
 movementSpeed = 10.0f;
 rotSpeed = 2.0f;
 }

 void Update () {
 //Stop once you reached near the target position
 if (Vector3.Distance(transform.position,
 targetTransform.position) < 5.0f)
 return;

 //Calculate direction vector from current position to target
//position
 Vector3 tarPos = targetTransform.position;
 tarPos.y = transform.position.y;
 Vector3 dirRot = tarPos - transform.position;

 //Build a Quaternion for this new rotation vector
 //using LookRotation method
 Quaternion tarRot = Quaternion.LookRotation(dirRot);

Implementing Sensors

[80]

 //Move and rotate with interpolation
 transform.rotation= Quaternion.Slerp(transform.rotation,
 tarRot, rotSpeed * Time.deltaTime);

 transform.Translate(new Vector3(0, 0,
 movementSpeed * Time.deltaTime));
 }
}

Properties of our Tank object

This script retrieves the position of the Target object on the map, and updates its
destination point and the direction accordingly. After we assign this script to our
tank, be sure to assign our Target object to the targetTransform variable.

Chapter 4

[81]

Aspect
Next, let's take a look at the Aspect.cs class. Aspect is a very simple class with
just one public property called aspectName. That's all the variables we need in this
chapter. Whenever our AI character senses something, we'll check against with this
aspectName if it's the aspect that the AI has been looking for.

The code in the Aspect.cs file is shown as follows:

using UnityEngine;
using System.Collections;

public class Aspect : MonoBehaviour {
 public enum aspect {
 Player,
 Enemy
 }
 public aspect aspectName;
}

Attach this aspect script to our player tank, and set the aspectName property
as Enemy.

Setting which aspect to look out for

AI character
Our AI character will be roaming around the scene in a random direction. It'll have
two senses: perspective and touch. The perspective sense will check whether the
enemy aspect is within a set visible range and distance. Touch sense will detect if
the enemy aspect has collided with the box collider, soon to be surrounding our AI
character. As we have seen previously, our player tank will have Enemy aspect. So,
these senses will be triggered when they detect the player tank.

The code in the Wander.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

public class Wander : MonoBehaviour {
 private Vector3 tarPos;

Implementing Sensors

[82]

 private float movementSpeed = 5.0f;
 private float rotSpeed = 2.0f;
 private float minX, maxX, minZ, maxZ;

 // Use this for initialization
 void Start () {
 minX = -45.0f;
 maxX = 45.0f;

 minZ = -45.0f;
 maxZ = 45.0f;

 //Get Wander Position
 GetNextPosition();
 }

 // Update is called once per frame
 void Update () {
 // Check if we're near the destination position
 if (Vector3.Distance(tarPos, transform.position) <= 5.0f)
 GetNextPosition(); //generate new random position

 // Set up quaternion for rotation toward destination
 Quaternion tarRot = Quaternion.LookRotation(tarPos -
 transform.position);

 // Update rotation and translation
 transform.rotation = Quaternion.Slerp(transform.rotation, tarRot,
 rotSpeed * Time.deltaTime);

 transform.Translate(new Vector3(0, 0,
 movementSpeed * Time.deltaTime));
 }

 void GetNextPosition() {
 tarPos = new Vector3(Random.Range(minX, maxX), 0.5f,
 Random.Range(minZ, maxZ));
 }
}

The Wander script generates a new random position in a specified range whenever
the AI character reaches its current destination point. The Update method will then
rotate our enemy, and move it towards this new destination. Attach this script to our
AI character so that it can move around in the scene.

Chapter 4

[83]

Sense
The Sense class is the interface of our sensory system that the other custom senses
can implement. It defines two virtual methods, Initialize and UpdateSense,
which will be implemented in custom senses, and are executed from the Start and
Update methods, respectively.

The code in the Sense.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

public class Sense : MonoBehaviour {
 public bool bDebug = true;
 public Aspect.aspect aspectName = Aspect.aspect.Enemy;
 public float detectionRate = 1.0f;

 protected float elapsedTime = 0.0f;

 protected virtual void Initialize() { }
 protected virtual void UpdateSense() { }

 // Use this for initialization
 void Start () {
 elapsedTime = 0.0f;
 Initialize();
 }

 // Update is called once per frame
 void Update () {
 UpdateSense();
 }
}

Basic properties include its detection rate to execute the sensing operation as well as
the name of the aspect it should look for. This script will not be attached to any of
our objects.

Perspective
The perspective sense will detect whether a specific aspect is within its field of view
and visible distance. If it sees anything, it will take the specified action.

The code in the Perspective.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

Implementing Sensors

[84]

public class Perspective : Sense {
 public int FieldOfView = 45;
 public int ViewDistance = 100;

 private Transform playerTrans;
 private Vector3 rayDirection;

 protected override void Initialize() {

 //Find player position
 playerTrans =

 GameObject.FindGameObjectWithTag("Player").transform;
 }

 // Update is called once per frame
 protected override void UpdateSense() {
 elapsedTime += Time.deltaTime;

 // Detect perspective sense if within the detection rate
 if (elapsedTime >= detectionRate) DetectAspect();
 }

 //Detect perspective field of view for the AI Character
 void DetectAspect() {
 RaycastHit hit;

 //Direction from current position to player position
 rayDirection = playerTrans.position -
 transform.position;

 //Check the angle between the AI character's forward
 //vector and the direction vector between player and AI
 if ((Vector3.Angle(rayDirection, transform.forward)) <
FieldOfView) {
 // Detect if player is within the field of view
 if (Physics.Raycast(transform.position, rayDirection,
 out hit, ViewDistance)) {
 Aspect aspect =
 hit.collider.GetComponent<Aspect>();

 if (aspect != null) {
 //Check the aspect
 if (aspect.aspectName == aspectName) {
 print("Enemy Detected");
 }
 }
 }
 }
 }

Chapter 4

[85]

We need to implement Initialize and UpdateSense methods that will be called
from the Start and Update methods of the parent Sense class, respectively. Then,
in the DetectAspect method, we first check the angle between the player and the
AI's current direction. If it's in the field of view range, we shoot a ray in the direction
where the player tank is located. The ray length is the value of visible distance
property. The Raycast method will return when it first hits another object. Then,
we'll check against the aspect component and the aspect name. This way, even if the
player is in the visible range, the AI character will not be able to see if it's hidden
behind the wall.

The OnDrawGizmos method draws lines based on the perspective field of view angle
and viewing distance, so that we can see the AI character's line-of-sight in the editor
window during play testing. Attach this script to our AI character, and be sure that
the aspect name is set to Enemy.

This method can be illustrated as follows:

 void OnDrawGizmos() {
 if (!bDebug || playerTrans == null) return;

 Debug.DrawLine(transform.position, playerTrans.position, Color.
red);

 Vector3 frontRayPoint = transform.position +
 (transform.forward * ViewDistance);

 //Approximate perspective visualization
 Vector3 leftRayPoint = frontRayPoint;
 leftRayPoint.x += FieldOfView * 0.5f;

 Vector3 rightRayPoint = frontRayPoint;
 rightRayPoint.x -= FieldOfView * 0.5f;

 Debug.DrawLine(transform.position, frontRayPoint, Color.green);

 Debug.DrawLine(transform.position, leftRayPoint, Color.green);

 Debug.DrawLine(transform.position, rightRayPoint, Color.green);
 }
}

Implementing Sensors

[86]

Touch
Another sense we're going to implement is Touch.cs, which is triggered when the
player entity is within a certain area near the AI entity. Our AI character has a box
collider component, and its Is Trigger flag is on.

We need to implement OnTriggerEnter event that will be fired whenever the
collider component is collided with another collider component. Since our tank
entity also has a collider and rigid body components, collision events will be raised
as soon as the colliders of the AI character and player tank are collided.

The code in the Touch.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

public class Touch : Sense {
 void OnTriggerEnter(Collider other) {
 Aspect aspect = other.GetComponent<Aspect>();
 if (aspect != null) {
 //Check the aspect
 if (aspect.aspectName == aspectName) {
 print("Enemy Touch Detected");
 }
 }
 }
}

We implement the OnTriggerEnter event to be fired whenever the collider
component is collided with another collider component. Since our tank entity also
has a collider and the rigid body components, collision events will be raised as soon
as the colliders of the AI character and the player tank are collided.

The collider around our player

Chapter 4

[87]

The previous figure shows the box collider of our enemy AI that we'll use to
implement touch sense. In the following screenshot, we see how our AI character
is set up.

Properties of our player

Inside the OnTriggerEnter method, we access the aspect component of the other
collided entity and check if the name of the aspect is the aspect this AI character is
looking for. And, for demo purposes, we just print out that the enemy aspect has
been detected by touch sense. We can also implement other behaviors if in real
projects; maybe the player will turn over to an enemy and start chasing, attacking,
and so on.

Implementing Sensors

[88]

Testing
Play the game in Unity3D, and move the player tank near the wandering AI
character by clicking the ground. You should see the Enemy touch detected message
in the console log window whenever our AI character gets close to our player tank.

Our player and tank in action

The previous figure shows an AI agent with touch and perspective senses looking
for an enemy aspect. Move the player tank in front of the AI character, and you'll get
the Enemy detected message. If you go to the editor view while running the game,
you should see the debug drawings rendered. This is because of the OnDrawGizmos
method implemented in the perspective Sense class.

Summary
This chapter introduces the concept of using sensors in implementing game AI, and
implemented two senses, perspective and touch, for our AI character. The sensory
system is just part of the decision-making system of the whole AI system. We can
use the sensory system in combination with a behavior system to execute certain
behaviors for certain senses. For example, we can use an FSM to change to chase and
attack states from the patrol state once we have detected that there's an enemy within
the line-of-sight. We'll also cover how to apply behavior tree systems in Chapter 9,
Behavior Trees. In the next chapter, we'll look at how to implement flocking behaviors
in Unity3D, as well as how to implement Craig Reynold's flocking algorithm.

Flocking
Flocking is the idea of many objects moving together as a group. We could sit down
and tell every object how it should move, but that would take a lot of work. Instead,
we want to be able to create a flock leader to do that for us. After that, all we need is
a few rules and the boids will be flocking all on their own. In this chapter, we'll learn
how to do that and implement flocking behavior in Unity3D.

We'll implement two variations of flocking in this chapter. The first one will be based
on a sample flocking behavior found in a demo project called Tropical Paradise
Island. This demo came with Unity in Version 2.0, but has been removed since Unity
3.0. The second variation will be based on Craig Reynold's flocking algorithm. There
are basically three rules that can be applied to each boid:

•	 Separation: To maintain a distance with other neighbors in the flock to
avoid collision

•	 Alignment: To move in the same direction as the flock, and with the
same velocity

•	 Cohesion: To maintain a minimum distance with the flock's center

Flocking from Unity's Island Demo
In this section, we'll create our own scene with flocks of objects and implement
the flocking behavior in C#. There are two main components in this example: the
individual boid behavior and a main controller to maintain and lead the crowd.

Flocking

[90]

Our scene hierarchy is shown in the following screenshot. As you can see, we have
several boid entities, UnityFlock, under a controller named UnityFlockController.
UnityFlock entities are individual boid objects, and they'll reference to their parent
UnityFlockController entity to use it as a leader. UnityFlockController will update
the next destination point randomly once it reaches the current destination point.

Scene hierarchy

UnityFlock is a prefab with just a cube mesh and a UnityFlock script. We can
use any other mesh representation for this prefab to represent something more
interesting like birds.

Individual Behavior
Boid is a term coined by Craig Reynold that refers to some bird like object. We'll use
this term to describe each individual object in our flock. Now let's implement our
boid behavior. You can find the following script in UnityFlock.cs, and this is the
behavior that controls each boid in our flock.

Chapter 5

[91]

The code in the UnityFlock.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

public class UnityFlock : MonoBehaviour {
 public float minSpeed = 20.0f;
 public float turnSpeed = 20.0f;
 public float randomFreq = 20.0f;
 public float randomForce = 20.0f;

 //alignment variables
 public float toOriginForce = 50.0f;
 public float toOriginRange = 100.0f;

 public float gravity = 2.0f;

 //seperation variables
 public float avoidanceRadius = 50.0f;
 public float avoidanceForce = 20.0f;

 //cohesion variables
 public float followVelocity = 4.0f;
 public float followRadius = 40.0f;

 //these variables control the movement of the boid
 private Transform origin;
 private Vector3 velocity;
 private Vector3 normalizedVelocity;
 private Vector3 randomPush;
 private Vector3 originPush;
 private Transform[] objects;
 private UnityFlock[] otherFlocks;
 private Transform transformComponent;

We declare the input values for our algorithm that can be set up and customized
from the editor. First, we define the minimum movement speed, minSpeed and
rotation speed, turnSpeed, for our boid. randomFreq is used to determine how many
times we want to update the randomPush value based on the randomForce value.
This force creates a randomly increased and decreased velocity and makes the flock
movement look more realistic.

Flocking

[92]

toOriginRange specifies how spread out we want our flock to be. We also use
toOriginForce to keep the boids in range and maintain a distance with the flock's
origin. Basically, these are the properties to deal with the alignment rule of our
flocking algorithm. The avoidanceRadius and avoidanceForce properties are used
to maintain a minimum distance between individual boids. These are the properties
that apply the separation rule to our flock.

followRadius and followVelocity are used to keep a minimum distance with the
leader or the origin of the flock. They are used to comply with the cohesion rule of
the flocking algorithm.

origin will be the parent object to control the whole group of flocking objects. Our
boid needs to know about the other boids in the flock. So, we use the objects and
otherFlocks properties to store the neighboring boids' information.

This is the initialization method for our boid:

 void Start () {
 randomFreq = 1.0f / randomFreq;

 //Assign the parent as origin
 origin = transform.parent;

 //Flock transform
 transformComponent = transform;

 //Temporary components
 Component[] tempFlocks= null;

 //Get all the unity flock components from the parent 	
 //transform in the group
 if (transform.parent) {
 tempFlocks = transform.parent.GetComponentsInChildren
 <UnityFlock>();
 }

 //Assign and store all the flock objects in this group
 objects = new Transform[tempFlocks.Length];
 otherFlocks = new UnityFlock[tempFlocks.Length];

 for (int i = 0;i<tempFlocks.Length;i++) {
 objects[i] = tempFlocks[i].transform;
 otherFlocks[i] = (UnityFlock)tempFlocks[i];
 }

Chapter 5

[93]

 //Null Parent as the flock leader will be
 //UnityFlockController object
 transform.parent = null;

 //Calculate random push depends on the random frequency
//provided
 StartCoroutine(UpdateRandom());
 }

We set the parent of the object of our boid as origin, meaning that this will be the
controller object to follow generally. Then, we grab all the other boids in the group
and store them in our own variables for later references.

The StartCoroutine method starts the UpdateRandom() method as a coroutine:

 IEnumerator UpdateRandom() {
 while (true) {
 randomPush = Random.insideUnitSphere * randomForce;
 yield return new WaitForSeconds(randomFreq +
 Random.Range(-randomFreq / 2.0f, randomFreq / 2.0f));
 }
 }

The UpdateRandom() method updates the randomPush value throughout the
game with an interval based on randomFreq. Random.insideUnitSphere returns
a Vector3 object with random x, y, and z values within a sphere with a radius of
the randomForce value. Then, we wait for a certain random amount of time before
resuming the while(true) loop to update the randomPush value again.

Now, here's our boid behavior's Update() method that helps our boid entity comply
with the three rules of the flocking algorithm:

 void Update () {
 //Internal variables
 float speed = velocity.magnitude;
 Vector3 avgVelocity = Vector3.zero;
 Vector3 avgPosition = Vector3.zero;
 float count = 0;
 float f = 0.0f;
 float d = 0.0f;
 Vector3 myPosition = transformComponent.position;
 Vector3 forceV;
 Vector3 toAvg;
 Vector3 wantedVel;

Flocking

[94]

 for (int i = 0;i<objects.Length;i++){
 Transform transform= objects[i];
 if (transform != transformComponent) {
 Vector3 otherPosition = transform.position;

 // Average position to calculate cohesion
 avgPosition += otherPosition;
 count++;

 //Directional vector from other flock to this flock
 forceV = myPosition - otherPosition;

 //Magnitude of that directional vector(Length)
 d= forceV.magnitude;

 //Add push value if the magnitude, the length of the
 //vector, is less than followRadius to the leader
 if (d < followRadius) {
 //calculate the velocity, the speed of the object, based
 //on the avoidance distance between flocks if the
 //current magnitude is less than the specified
 //avoidance radius
 if (d < avoidanceRadius) {
 f = 1.0f - (d / avoidanceRadius);
 if (d > 0) avgVelocity +=
 (forceV / d) * f * avoidanceForce;
 }

 //just keep the current distance with the leader
 f = d / followRadius;
 UnityFlock otherSealgull = otherFlocks[i];
 //we normalize the otherSealgull velocity vector to get
 //the direction of movement, then we set a new velocity
 avgVelocity += otherSealgull.normalizedVelocity * f *
 followVelocity;
 }
 }
 }

The preceding code implements the separation rule. First, we check the distance
between the current boid and the other boids and update the velocity accordingly,
as explained in the comments.

Next, we calculate the average velocity of the flock by dividing the current velocity
with the number of boids in the flock:

 if (count > 0) {
 //Calculate the average flock velocity(Alignment)
 avgVelocity /= count;

Chapter 5

[95]

 //Calculate Center value of the flock(Cohesion)
 toAvg = (avgPosition / count) - myPosition;
 }
 else {
 toAvg = Vector3.zero;
 }

 //Directional Vector to the leader
 forceV = origin.position - myPosition;
 d = forceV.magnitude;
 f = d / toOriginRange;

 //Calculate the velocity of the flock to the leader
 if (d > 0) //if this void is not at the center of the flock
 originPush = (forceV / d) * f * toOriginForce;

 if (speed < minSpeed && speed > 0) {
 velocity = (velocity / speed) * minSpeed;
 }

 wantedVel = velocity;

 //Calculate final velocity
 wantedVel -= wantedVel * Time.deltaTime;	
 wantedVel += randomPush * Time.deltaTime;
 wantedVel += originPush * Time.deltaTime;
 wantedVel += avgVelocity * Time.deltaTime;
 wantedVel += toAvg.normalized * gravity * Time.deltaTime;

 //Final Velocity to rotate the flock into
 velocity = Vector3.RotateTowards(velocity, wantedVel,
 turnSpeed * Time.deltaTime, 100.00f);

 transformComponent.rotation =
Quaternion.LookRotation(velocity);

 //Move the flock based on the calculated velocity
 transformComponent.Translate(velocity * Time.deltaTime,
 Space.World);

 //normalise the velocity
 normalizedVelocity = velocity.normalized;
 }
}

Flocking

[96]

Finally, we add up all the factors such as randomPush, originPush, and
avgVelocity to calculate our final target velocity, wantedVel. We also update
our current velocity to wantedVel with linear interpolation using the Vector3.
RotateTowards method. Then, we move our boid based on the new velocity using
the Translate() method.

Next, we create a cube mesh, and add this UnityFlock script, and make it a prefab as
shown in the following screenshot:

Unity flock prefab

Chapter 5

[97]

Controller
Now it is time to create the controller class. This class updates its own position so
that the other individual boid objects know where to go. This object is referenced in
the origin variable in the preceding UnityFlock script.

The code in the UnityFlockController.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

public class UnityFlockController : MonoBehaviour {
 public Vector3 offset;
 public Vector3 bound;
 public float speed = 100.0f;

 private Vector3 initialPosition;
 private Vector3 nextMovementPoint;

 // Use this for initialization
 void Start () {
 initialPosition = transform.position;
 CalculateNextMovementPoint();
 }

 // Update is called once per frame
 void Update () {
 transform.Translate(Vector3.forward * speed * Time.deltaTime);
 transform.rotation = Quaternion.Slerp(transform.rotation,
 Quaternion.LookRotation(nextMovementPoint -
 transform.position), 1.0f * Time.deltaTime);

 if (Vector3.Distance(nextMovementPoint,
 transform.position) <= 10.0f)
 CalculateNextMovementPoint();
 }

In our Update() method, we check whether our controller object is near the target
destination point. If it is, we update our nextMovementPoint variable again with the
CalculateNextMovementPoint() method we just discussed:

 void CalculateNextMovementPoint () {
 float posX = Random.Range(initialPosition.x - bound.x,
 initialPosition.x + bound.x);
 float posY = Random.Range(initialPosition.y - bound.y,

Flocking

[98]

 initialPosition.y + bound.y);
 float posZ = Random.Range(initialPosition.z - bound.z,
 initialPosition.z + bound.z);

 nextMovementPoint = initialPosition + new Vector3(posX,
 posY, posZ);
 }
}

The CalculateNextMovementPoint() method finds the next random destination
position in a range between the current position and the boundary vectors.

Putting it all together, as shown in the previous scene hierarchy screenshot, you
should have flocks flying around somewhat realistically:

Flocking using the Unity seagull sample

Chapter 5

[99]

Alternative implementation
Here's a simpler implementation of the flocking algorithm. In this example, we'll
create a cube object and place a rigid body on our boids. With Unity's rigid body
physics, we can simplify the translation and steering behavior of our boid. To
prevent our boids from overlapping each other, we'll add a sphere collider
physics component.

We'll have two components in this implementation as well: individual boid behavior
and controller behavior. The controller will be the object that the rest of the boids try
and follow.

The code in the Flock.cs file can be shown as follows:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Flock : MonoBehaviour {
 internal FlockController controller;

 void Update () {
 if (controller) {
 Vector3 relativePos = steer() * Time.deltaTime;

 if (relativePos != Vector3.zero)
 rigidbody.velocity = relativePos;

 // enforce minimum and maximum speeds for the boids
 float speed = rigidbody.velocity.magnitude;
 if (speed > controller.maxVelocity) {
 rigidbody.velocity = rigidbody.velocity.normalized *
 controller.maxVelocity;
 }
 else if (speed < controller.minVelocity) {
 rigidbody.velocity = rigidbody.velocity.normalized *
 controller.minVelocity;
 }
 }
 }

Flocking

[100]

FlockController will be created in a moment. In our Update() method, we
calculate the velocity for our boid using the following steer() method and apply
it to its rigid body velocity. Next, we check the current speed of our rigid body
component to verify whether it's in the range of our controller's maximum and
minimum velocity limits. If not, we cap the velocity at the preset range:

 private Vector3 steer () {
 Vector3 center = controller.flockCenter -
 transform.localPosition; // cohesion

 Vector3 velocity = controller.flockVelocity -
 rigidbody.velocity; // alignment

 Vector3 follow = controller.target.localPosition -
 transform.localPosition; // follow leader

 Vector3 separation = Vector3.zero;

 foreach (Flock flock in controller.flockList) {
 if (flock != this) {
 Vector3 relativePos = transform.localPosition -
 flock.transform.localPosition;

 separation += relativePos / (relativePos.sqrMagnitude);
 }
 }

 // randomize
 Vector3 randomize = new Vector3((Random.value * 2) - 1,
 (Random.value * 2) - 1, (Random.value * 2) - 1);

 randomize.Normalize();

 return (controller.centerWeight * center +
 controller.velocityWeight * velocity +
 controller.separationWeight * separation +
 controller.followWeight * follow +
 controller.randomizeWeight * randomize);
 }
}

Chapter 5

[101]

The steer() method implements separation, cohesion, alignment, and follows the
leader rules of the flocking algorithm. Then, we sum up all the factors together with
a random weight value. With this Flock script together with rigid body and sphere
collider components, we create a Flock prefab as shown in the following screenshot:

Flock

FlockController
FlockController is a simple behavior to generate the boids at runtime and update the
center of the flock as well as the average velocity of the flock.

The code in the FlockController.cs file can be shown as follows:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class FlockController : MonoBehaviour {
 public float minVelocity = 1; //Min Velocity
 public float maxVelocity = 8; //Max Flock speed
 public int flockSize = 20; //Number of flocks in the group

 //How far the boids should stick to the center (the more
 //weight stick closer to the center)
 public float centerWeight = 1;

 public float velocityWeight = 1; //Alignment behavior

Flocking

[102]

 //How far each boid should be separated within the flock
 public float separationWeight = 1;

 //How close each boid should follow to the leader (the more
 //weight make the closer follow)
 public float followWeight = 1;

 //Additional Random Noise
 public float randomizeWeight = 1;

 public Flock prefab;
 public Transform target;

 //Center position of the flock in the group
 internal Vector3 flockCenter;
 internal Vector3 flockVelocity; //Average Velocity

 public ArrayList flockList = new ArrayList();

 void Start () {
 for (int i = 0; i < flockSize; i++) {
 Flock flock = Instantiate(prefab, transform.position,
 transform.rotation) as Flock;
 flock.transform.parent = transform;
 flock.controller = this;
 flockList.Add(flock);
 }
 }

We declare all the properties to implement the flocking algorithm and then start with
the generation of the boid objects based on the flock size input. We set up the controller
class and parent transform object like we did last time. Then, we add the created boid
object in our ArrayList function. The target variable accepts an entity to be used as a
moving leader. We'll create a sphere entity as a moving target leader for our flock:

 void Update () {
 //Calculate the Center and Velocity of the whole flock group
 Vector3 center = Vector3.zero;
 Vector3 velocity = Vector3.zero;

 foreach (Flock flock in flockList) {
 center += flock.transform.localPosition;
 velocity += flock.rigidbody.velocity;
 }

Chapter 5

[103]

 flockCenter = center / flockSize;
 flockVelocity = velocity / flockSize;
 }
}

In our Update() method, we keep updating the average center and velocity of the
flock. Those are the values referenced from our boid object, and they are used to
adjust the cohesion and alignment properties with the controller.

Flock controller

Flocking

[104]

Following is our Target entity with the TargetMovement script, which we will create
in a moment. The movement script is the same as we have seen in our previous
Unity3D sample controller's movement script:

Target entity with TargetMovement script

Here is how our TargetMovement script works. We pick a random point nearby for
the target to move to. When we get close to that point, pick a new point. The boids
will then follow the target.

The code in the TargetMovement.cs file can be shown as follows:

using UnityEngine;
using System.Collections;

public class TargetMovement : MonoBehaviour {
 //Move target around circle with tangential speed
 public Vector3 bound;
 public float speed = 100.0f;

 private Vector3 initialPosition;
 private Vector3 nextMovementPoint;

 void Start () {
 initialPosition = transform.position;
 CalculateNextMovementPoint();
 }

Chapter 5

[105]

 void CalculateNextMovementPoint () {
 float posX = Random.Range(initialPosition.x = bound.x,
 initialPosition.x+bound.x);
 float posY = Random.Range(initialPosition.y = bound.y,
 initialPosition.y+bound.y);
 float posZ = Random.Range(initialPosition.z = bound.z,
 initialPosition.z+bound.z);

 nextMovementPoint = initialPosition+
 new Vector3(posX, posY, posZ);
 }
 void Update () {
 transform.Translate(Vector3.forward * speed * Time.deltaTime);
 transform.rotation = Quaternion.Slerp(transform.rotation,
 Quaternion.LookRotation(nextMovementPoint -
 transform.position), 1.0f * Time.deltaTime);

 if (Vector3.Distance(nextMovementPoint, transform.position)
 <= 10.0f) CalculateNextMovementPoint();
 }
}

After we put everything together, we should have nice flocking boids flying around
in our scene chasing that target:

Flocking with Craig Reynold's algorithm

Flocking

[106]

Summary
In this chapter, we learned how to implement flocking behavior in two ways. First
we examined, dissected, and learned how to implement a flocking algorithm based
on Unity3D's Tropical Island Demo project. Next, we implemented using rigid body
to control the boid's movement and sphere collider to avoid collision with other
boids. We applied our flocking behavior to the flying objects, but you can apply the
techniques in those examples to implement other character behaviors such as fish
shoaling, insects swarming, or land animals herding. You'll only have to implement
different leader movement behaviors such as limiting movement along the y-axis for
characters that can't move up and down. For a 2D game, we would just freeze the
y position. For 2D movement along uneven terrain, we would have to modify our
script to not put any forces in the y direction.

In the next chapter, we will go beyond random movement and take a look at path
following. We will also be going over how to avoid obstacles that are in your way.

Path Following and
Steering Behaviors

This will be a simple and short chapter, and we will implement two Unity3D scenes.
In the first example, we'll set up a scene with a path and will write some script to
make an entity follow this path. In the second example, we'll set up a scene with
a couple of obstacles and program an entity to achieve a target while avoiding the
obstacles. Obstacle avoidance is a simple behavior for the AI entities to reach a target
point. It's important to note that the specific behavior implemented in this chapter
is meant to use for behaviors, such as crowd simulation, where the main objective
of each agent entity is just to avoid the other agents and reach the target. There's
no consideration on what would be the most efficient and shortest path. We'll learn
about the A* pathfinding algorithm in the next chapter.

Path Following and Steering Behaviors

[108]

Following a path
Paths are usually created by connecting waypoints together. So, we'll set up a simple
path as shown in the following figure and then make our cube entity follow along
the path smoothly. Now, there are many ways to build such a path. The one we are
going to implement here could arguably be the simplest one. We'll write a script
called Path.cs and store all the waypoint positions in a Vector3 array. Then, from
the editor, we'll enter those positions manually. It's bit of a tedious process right
now. One option is to use the position of an empty game object as waypoints. Or, if
you want, you can create your own editor plugins to automate these kind of tasks,
but that is outside the scope of this book. For now, it should be fine to just enter the
waypoint information manually, since the number of waypoints that we are creating
here are not that substantial.

Object path

First, we create an empty game entity and add our path script component as shown
in the following screenshot:

Chapter 6

[109]

Here is how the Hierarchy is organized

Then, we populate our Point A variable with all the points we want to be included in
our path:

Properties of our Path script

Path Following and Steering Behaviors

[110]

The previous list shows the waypoints needed to create the path that was described
earlier. The other two properties are debug mode and radius. If the debug mode
property is checked, the path formed by the positions entered will be drawn as
gizmos in the editor window. The radius property is a range value for the path
following entities to use so that they can know when they've reached a particular
waypoint if they are in this radius range. Since to reach an exact position can be
pretty difficult, this range radius value provides an effective way for the path
following agents to navigate through the path.

Path script
So let's take a look at the path script itself. It will be responsible for managing the
path for our objects. Look at the following code in the Path.cs file:

using UnityEngine;
using System.Collections;

public class Path : MonoBehaviour {
 public bool bDebug = true;
 public float Radius = 2.0f;
 public Vector3[] pointA;

 public float Length {
 get {
 return pointA.Length;
 }
 }

 public Vector3 GetPoint(int index) {
 return pointA[index];
 }

 void OnDrawGizmos() {
 if (!bDebug) return;

 for (int i = 0; i <pointA.Length; i++) {
 if (i + 1<pointA.Length) {
 Debug.DrawLine(pointA[i], pointA[i + 1],
 Color.red);
 }
 }
 }
}

Chapter 6

[111]

As you can see, that is a very simple script. It has a Length property that returns the
length and size of the waypoint array if requested. The GetPoint method returns the
Vector3 position of a particular waypoint at a specified index in the array. Then, we
have the OnDrawGizmos method that is called by Unity3D frame to draw components
in the editor environment. The drawing here won't be rendered in the game view
unless gizmos, located in the top right corner of the game view, is turned on.

Path follower
Next we have our vehicle entity, which is just a simple cube object in this example.
We can replace the cube later with whatever 3D models we want. After we create
the script, we add the VehicleFollowing script component as shown in the
following screenshot:

Properties of our Vehicle Following script

The script takes a couple of parameters. First is the reference to the path object
it needs to follow. Then, the Speed and Mass properties, which are needed to
calculate its acceleration properly. Is Looping is a flag that makes this entity follow
the path continuously if it's checked. Let's take a look at the following code in the
VehicleFollowing.cs file:

using UnityEngine;
using System.Collections;

public class VehicleFollowing : MonoBehaviour {
 public Path path;
 public float speed = 20.0f;
 public float mass = 5.0f;
 public bool isLooping = true;

 //Actual speed of the vehicle
 private float curSpeed;

Path Following and Steering Behaviors

[112]

 private int curPathIndex;
 private float pathLength;
 private Vector3 targetPoint;

 Vector3 velocity;

First, we initialize the properties and set up the direction of our velocity vector with
the entity's forward vector in the Start method, as shown in the following code:

 void Start () {
 pathLength = path.Length;
 curPathIndex = 0;

 //get the current velocity of the vehicle
 velocity = transform.forward;
 }

There are only two methods that are important in this script, the Update and Steer
methods. Let's take a look at the following code:

 void Update () {
 //Unify the speed
 curSpeed = speed * Time.deltaTime;

 targetPoint = path.GetPoint(curPathIndex);

 //If reach the radius within the path then move to next
 //point in the path
 if (Vector3.Distance(transform.position, targetPoint) <
 path.Radius) {
 //Don't move the vehicle if path is finished
 if (curPathIndex < pathLength - 1) curPathIndex++;
 else if (isLooping) curPathIndex = 0;
 else return;
 }

 //Move the vehicle until the end point is reached in
 //the path
 if (curPathIndex >= pathLength) return;

 //Calculate the next Velocity towards the path
 if (curPathIndex >= pathLength-1&& !isLooping)
 velocity += Steer(targetPoint, true);
 else velocity += Steer(targetPoint);

Chapter 6

[113]

 //Move the vehicle according to the velocity
 transform.position += velocity;
 //Rotate the vehicle towards the desired Velocity
 transform.rotation = Quaternion.LookRotation(velocity);
 }

In the Update method, we check whether our entity has reached a particular
waypoint by calculating the distance between its current position and the path's
radius range. If it's in the range, we just increase the index to look it up from the
waypoints array. If it's the last waypoint, we check if the isLooping flag is set. If it
is set, then we set the target to the starting waypoint. Otherwise, we just stop at that
point. Though, if we wanted, we could make it so our object turned around and went
back the way it came. In the next part, we will calculate the acceleration from the
Steer method. Then, we rotate our entity and update the position according to the
speed and direction of the velocity:

 //Steering algorithm to steer the vector towards the target
 public Vector3 Steer(Vector3 target,
 bool bFinalPoint = false) {
 //Calculate the directional vector from the current
 //position towards the target point
 Vector3 desiredVelocity = (target -transform.position);
 float dist = desiredVelocity.magnitude;

 //Normalise the desired Velocity
 desiredVelocity.Normalize();

 //Calculate the velocity according to the speed
 if (bFinalPoint&&dist<10.0f) desiredVelocity *=
 (curSpeed * (dist / 10.0f));
 else desiredVelocity *= curSpeed;

 //Calculate the force Vector
 Vector3 steeringForce = desiredVelocity - velocity;
 Vector3 acceleration = steeringForce / mass;

 return acceleration;
 }
}

Path Following and Steering Behaviors

[114]

The Steer method takes the parameter; target Vector3 position to move, whether
this is the final waypoint in the path. The first thing we do is calculate the remaining
distance from the current position to the target position. The target position vector
minus the current position vector gives a vector towards the target position vector.
The magnitude of this vector is the remaining distance. We then normalize this
vector just to preserve the direction property. Now, if this is the final waypoint,
and the distance is less than 10 of a number we just decided to use, we slow down
the velocity gradually according to the remaining distance to our point until the
velocity finally becomes zero. Otherwise, we just update the target velocity with
the specified speed value. By subtracting the current velocity vector from this target
velocity vector, we can calculate the new steering vector. Then by dividing this
vector with the mass value of our entity, we get the acceleration.

If you run the scene, you should see your cube object following the path. You can
also see the path that is drawn in the editor view. Play around with the speed and
mass value of the follower and radius values of the path and see how they affect the
overall behavior of the system.

Avoiding obstacles
In this section, we'll set up a scene as shown in the following screenshot, and make
our AI entity avoid the obstacles while trying to reach the target point. The algorithm
presented here using the raycasting method is very simple, so it can only avoid the
obstacles blocking the path in front of it. The following screenshot will show us what
our scene will look like:

A sample scene set up

Chapter 6

[115]

To create this, we make a few cube entities and group them under an empty game
object called Obstacles. We also create another cube object called Agent and give
it our obstacle avoidance script. We then create a ground plane object to assist in
finding a target position.

Here is how the Hierarchy is organized

It is worth noting that this Agent object is not a pathfinder. As such, if we set too
many walls up, our Agent might have a hard time finding the target. Try a few wall
setups and see how our Agent performs.

Path Following and Steering Behaviors

[116]

Adding a custom layer
We will now add a custom layer to our object. To add a new layer, we navigate to
Edit | Project Settings | Tags. Assign the name Obstacles to User Layer 8. Now,
we go back to our cube entity and set its layer property to Obstacles.

Creating a new layer

This is our new layer, which is added to Unity3D. Later, when we do the ray casting
to detect obstacles, we'll only check for those entities using this particular layer. This
way, we can ignore some objects that are not obstacles that are being hit by a ray,
such as bushes or vegetation.

Assigning our new layer

For larger projects, our game objects probably already have a layer assigned to them.
As such, instead of changing the object's layer to Obstacles, we would instead make
a list using bitmaps of layers for our cube entity to use when detecting obstacles. We
will talk more about bitmaps in the next section.

Layers are most commonly used by cameras to render a
part of the scene and by lights to illuminate only some
parts of the scene. But, they can also be used by ray casting
to selectively ignore colliders or to create collisions. You
can learn more about this at http://docs.unity3d.
com/Documentation/Components/Layers.html.

Chapter 6

[117]

Obstacle avoidance
Now it is time to make the script that will help our cube entity avoid those walls.

Properties of our Vehicle Avoidance script

As usual, we first initialize our entity script with the default properties and draw
a GUI text in our OnGUI method. Let's take a look at the following code in the
VehicleAvoidance.cs file:

using UnityEngine;
using System.Collections;

public class VehicleAvoidance : MonoBehaviour {
 public float speed = 20.0f;
 public float mass = 5.0f;
 public float force = 50.0f;
 public float minimumDistToAvoid = 20.0f;

 //Actual speed of the vehicle
 private float curSpeed;
 private Vector3 targetPoint;

 // Use this for initialization
 void Start () {
 mass = 5.0f;
 targetPoint = Vector3.zero;
 }

 void OnGUI() {
 GUILayout.Label("Click anywhere to move the vehicle.");
 }

Then in our Update method, we update the agent entity's position and rotation based
on the direction vector returned by the AvoidObstacles method:

 //Update is called once per frame
 void Update () {
 //Vehicle move by mouse click
 RaycastHit hit;

Path Following and Steering Behaviors

[118]

 var ray = Camera.main.ScreenPointToRay
 (Input.mousePosition);

 if (Input.GetMouseButtonDown(0) &&
 Physics.Raycast(ray, out hit, 100.0f)) {
 targetPoint = hit.point;
 }

 //Directional vector to the target position
 Vector3 dir = (targetPoint - transform.position);
 dir.Normalize();

 //Apply obstacle avoidance
 AvoidObstacles(ref dir);

 //...

 }

The first thing we do in our Update method is retrieve the mouse click position so
we can move our AI entity. We do this by shooting a ray from the camera in the
direction it's looking. Then, we take the point where the ray hit the ground plane
as our target position. Once we get the target position vector, we can calculate the
direction vector by subtracting the current position vector from the target position
vector. Then we call the AvoidObstacles method and pass in this direction vector:

 //Calculate the new directional vector to avoid
 //the obstacle
 public void AvoidObstacles(ref Vector3 dir) {
 RaycastHit hit;

 //Only detect layer 8 (Obstacles)
 int layerMask = 1<<8;

 //Check that the vehicle hit with the obstacles within
 //it's minimum distance to avoid
 if (Physics.Raycast(transform.position,
 transform.forward, out hit,
 minimumDistToAvoid, layerMask)) {
 //Get the normal of the hit point to calculate the
 //new direction
 Vector3 hitNormal = hit.normal;
 hitNormal.y = 0.0f; //Don't want to move in Y-Space

Chapter 6

[119]

 //Get the new directional vector by adding force to
 //vehicle's current forward vector
 dir = transform.forward + hitNormal * force;
 }
 }
}

The AvoidObstacles method is also quite simple. The only trick to note here is
that raycasting interacts selectively with the Obstacles layer that we specified at
User Layer 8 in our Unity3D Tag Manager. The Raycast method accepts a layer
mask parameter to determine which layers to ignore and which to consider during
raycasting. Now, if you look at how many layers you can specify in Tag Manager,
you'll find a total of 32 layers. Therefore, Unity3D uses a 32-bit integer number to
represent this layer mask parameter. For example, the following would represent a
zero in 32 bits:

0000 0000 0000 0000 0000 0000 0000 0000

By default Unity3D uses the first eight layers as built-in layers. So, when you raycast
without using a layer mask parameter, it'll raycast against all those eight layers,
which could be represented like the following in a bitmask:

0000 0000 0000 0000 0000 0000 1111 1111

Our Obstacles layer was set at layer 8 (9th index), and we only want to raycast
against this layer. So, we'd like to set up our bitmask in the following way:

0000 0000 0000 0000 0000 0001 0000 0000

The easiest way to set up this bitmask is by using the bit shift operators. We only
need to place the 'on' bit or 1, at the 9th index, which means we can just move that
bit 8 places to the left. So, we use the left shift operator to move the bit 8 places to the
left, as shown in the following code:

int layerMask = 1<<8;

If we wanted to use multiple layer masks, say layer 8 and layer 9, an easy way would
be to use the bitwise OR operator like this:

int layerMask = (1<<8) | (1<<9);

You can also find a good discussion on using layermasks
on Unity3D online. The question and answer site
can be found at http://answers.unity3d.com/
questions/8715/how-do-i-use-layermasks.html.

Path Following and Steering Behaviors

[120]

Once we have the layer mask, we call the Physics.Raycast method from the
current entity's position and in the forward direction. For the length of the ray, we
use our minimumDistToAvoid variable so that we'll only avoid those obstacles that
are being hit by the ray within this distance.

Then we take the normal vector of the hit ray, multiply it with the force vector, and
add it to the current direction of our entity to get the new resultant direction vector,
which we return from this method.

How our cube entity avoids a wall

Then in our Update method, we use this new direction after avoiding obstacles to
rotate the AI entity and update the position according to the speed value.

 void Update () {

 //...

 //Don't move the vehicle when the target point
 //is reached
 if (Vector3.Distance(targetPoint,
 transform.position) < 3.0f) return;

 //Assign the speed with delta time
 curSpeed = speed * Time.deltaTime;

 //Rotate the vehicle to its target
 //directional vector

Chapter 6

[121]

 var rot = Quaternion.LookRotation(dir);
 transform.rotation = Quaternion.Slerp
 (transform.rotation, rot, 5.0f *
 Time.deltaTime);

 //Move the vehicle towards
 transform.position += transform.forward *
 curSpeed;
 }

Summary
In this chapter, we set up two scenes and studied how to build path following
agents together with obstacle avoidance behavior. We learned about the Unity3D
layer feature and how to selectively raycast against a particular layer. Although the
samples were simple, we can apply those simple techniques in various scenarios.
For instance, we can set up a path along a road, and by using some vehicle models
combined with obstacle avoidance behavior, we can easily set up a decent traffic
simulation. Or you can just replace them with biped characters and build crowd
simulation. You can also combine them with some finite states to add some more
behaviors to make them more intelligent. This simple obstacle avoidance behavior
that was implemented in this chapter doesn't consider the optimal path to reach the
target position. Instead, it just goes straight to that target, and only if an obstacle
is seen within a particular distance does it try to avoid it. It's supposed to be used
among moving or dynamic objects and obstacles.

In the following chapter, we'll study how to implement a pathfinding algorithm called
A* to determine the optimal path before moving, while avoiding static obstacles.

A* Pathfinding
In this chapter, we'll implement A* algorithm in Unity3D environment using C#.
The A* pathfinding algorithm is widely used in games and interactive applications
even though there are other algorithms, such as Dijkstra's algorithm, because of
its simplicity and effectiveness. We've briefly covered this algorithm previously
in Chapter 1, Introduction to AI. But let's review the algorithm again from an
implementation perspective.

A* algorithm revisit
Let's review the A* algorithm again before we proceed to implement it in next
section. First, we'll need to represent the map in a traversable data structure.
While many structures are possible, for this example we will use a 2D grid array.
We'll implement the GridManager class later to handle this map information. Our
GridManager class will keep a list of the Node objects that are basically titles in a 2D
grid. So we need to implement that Node class to handle things such as node type;
whether it's a traversable node or an obstacle, cost to pass through and cost to reach
the goal Node, and so on.

We'll have two variables to store the nodes that have been processed and the nodes
that we have to process. We'll call them closed list and open list respectively. We'll
implement that list type in the PriorityQueue class. And then finally, the following
A* algorithm will be implemented in the AStar class. Let's take a look at it:

1.	 First, we start with the starting node and put it in the open list.
2.	 As long as the open list has some nodes in it, we'll perform the

following process.
3.	 Pick the first node from the open list and keep it as the current node.

(This is assuming that we've sorted the open list and the first node has
the least cost value, which will be mentioned at the end of the code.)

A* Pathfinding

[124]

4.	 Get the neighboring nodes of this current node, which are not obstacle types,
such as a wall or canyon that can't be passed through.

5.	 For each neighbor node, check if this neighbor node is already in the closed
list. If not we'll calculate the total cost (F) for this neighbor node using the
following formula:
F = G + H

In the preceding formula, G is the total cost from the previous node to this
node and H is the total cost from this node to the final target node.

6.	 Store that cost data in the neighbor node object. Also, store the current node
as the parent node as well. Later we'll use this parent node data to trace back
the actual path.

7.	 Put this neighbor node in the open list. Sort the open list in ascending order,
ordered by the total cost to reach the target node.

8.	 If there's no more neighbor nodes to process, put the current node in the
closed list and remove it from the open list.

9.	 Go back to step 2.
Once you have completed this process your current node should be in the target
goal node position, but only if there's an obstacle free path to reach the goal node
from the start node. If it is not at the goal node, then there's no available path to the
target node from the current node position. If there's a valid path all we have to do
now is to trace back from current node's parent node, until we reach the start node
again. That'll give us a path list of all the nodes that we chose during our pathfinding
process ordered from the target node to the start node. We then just reverse this path
list, since we want to know the path from the start node to the target goal node.

This is a general overview of the algorithm we're going to implement in Unity3D
using C#. So let's get started.

Implementation
We'll implement the preliminary classes that were mentioned before, such as the
Node class, the GridManager class, and the PriorityQueue class. Then we'll use
them in our main AStar class.

Chapter 7

[125]

Node
The Node class will handle each tile object in our 2D grid representing the maps
shown in the Node.cs file:

using UnityEngine;
using System.Collections;
using System;

public class Node : IComparable {
 public float nodeTotalCost;
 public float estimatedCost;
 public bool bObstacle;
 public Node parent;
 public Vector3 position;

 public Node() {
 this.estimatedCost = 0.0f;
 this.nodeTotalCost = 1.0f;
 this.bObstacle = false;
 this.parent = null;
 }

 public Node(Vector3 pos) {
 this.estimatedCost = 0.0f;
 this.nodeTotalCost = 1.0f;
 this.bObstacle = false;
 this.parent = null;
 this.position = pos;
 }

 public void MarkAsObstacle() {
 this.bObstacle = true;
 }

The Node class has properties, such as the cost values (G and H), flags to mark whether
it is an obstacle, its positions and parent node. The nodeTotalCost is G, which is the
movement cost value from starting node to this node so far and the estimatedCost
is H, which is total estimated cost from this node to the target goal node. We also have
two simple constructor methods and a wrapper method to set whether this node is an
obstacle. Then, we implement the CompareTo method as shown in the following code:

 public int CompareTo(object obj) {
 Node node = (Node)obj;
 //Negative value means object comes before this in the sort
 //order.
 if (this.estimatedCost < node.estimatedCost)

A* Pathfinding

[126]

 return -1;
 //Positive value means object comes after this in the sort
 //order.
 if (this.estimatedCost > node.estimatedCost) return 1;
 return 0;
 }
}

This method is important. Our Node class inherits from IComparable because we
want to override this CompareTo method. If you can recall what we discussed in the
previous algorithm section, you'll notice that we need to sort our list of node arrays
based on the total estimated cost. The ArrayList type has a method called Sort. Sort
basically looks for this CompareTo method, implemented inside the object (in this case
our Node objects) from the list. So, we implement this method to sort the node objects
based on our estimatedCost value. You can learn more about this .NET framework
feature in the following resource.

The IComparable.CompareTo method can be found
at http://msdn.microsoft.com/en-us/library/
system.icomparable.compareto.aspx.

PriorityQueue
A PriorityQueue is a short and simple class to make the handling of the nodes,
ArrayList easier as shown in the following PriorityQueue.cs class:

using UnityEngine;
using System.Collections;

public class PriorityQueue {
 private ArrayList nodes = new ArrayList();

 public int Length {
 get { return this.nodes.Count; }
 }

 public bool Contains(object node) {
 return this.nodes.Contains(node);
 }

 public Node First() {
 if (this.nodes.Count > 0) {
 return (Node)this.nodes[0];
 }

Chapter 7

[127]

 return null;
 }

 public void Push(Node node) {
 this.nodes.Add(node);
 this.nodes.Sort();
 }

 public void Remove(Node node) {
 this.nodes.Remove(node);
 //Ensure the list is sorted
 this.nodes.Sort();
 }
}

The preceding code listing should be easy to understand. One thing to notice is
that after adding or removing node from the nodes' ArrayList, we call the Sort
method. This will call the Node object's CompareTo method, and will sort the nodes
accordingly by the estimatedCost value.

GridManager
A GridManager class handles all the properties of the grid representing the map.
We'll keep a singleton instance of the GridManager class, as we need only one object
to represent the map, as shown in the following GridManager.cs file:

using UnityEngine;
using System.Collections;

public class GridManager : MonoBehaviour {
 private static GridManager s_Instance = null;

 public static GridManager instance {
 get {
 if (s_Instance == null) {
 s_Instance = FindObjectOfType(typeof(GridManager))
 as GridManager;
 if (s_Instance == null)
 Debug.Log("Could not locate a GridManager " +
 "object. \n You have to have exactly " +
 "one GridManager in the scene.");
 }
 return s_Instance;
 }
 }

A* Pathfinding

[128]

We look for the GridManager object in our scene and if found, we keep it in our
s_Instance static variable.

 public int numOfRows;
 public int numOfColumns;
 public float gridCellSize;
 public bool showGrid = true;
 public bool showObstacleBlocks = true;

 private Vector3 origin = new Vector3();
 private GameObject[] obstacleList;
 public Node[,] nodes { get; set; }
 public Vector3 Origin {
 get { return origin; }
 }

Next, we declare all the variables; we'll need to represent our map, such as number
of rows and columns, the size of each grid tile, and some boolean variables to
visualize the grid and obstacles as well as to store all the nodes present in the grid as
shown in the following code:

 void Awake() {
 obstacleList = GameObject.FindGameObjectsWithTag("Obstacle");
 CalculateObstacles();
 }
 // Find all the obstacles on the map
 void CalculateObstacles() {
 nodes = new Node[numOfColumns, numOfRows];
 int index = 0;
 for (int i = 0; i < numOfColumns; i++) {
 for (int j = 0; j < numOfRows; j++) {
 Vector3 cellPos = GetGridCellCenter(index);
 Node node = new Node(cellPos);
 nodes[i, j] = node;
 index++;
 }
 }
 if (obstacleList != null && obstacleList.Length > 0) {
 //For each obstacle found on the map, record it in our list
 foreach (GameObject data in obstacleList) {
 int indexCell = GetGridIndex(data.transform.position);
 int col = GetColumn(indexCell);
 int row = GetRow(indexCell);
 nodes[row, col].MarkAsObstacle();
 }
 }
 }

Chapter 7

[129]

We look for all the game objects with a tag Obstacle and put them in
our obstacleList property. Then we set up our nodes' 2D array in the
CalculateObstacles method. First, we just create the normal node objects with
default properties. Just after that we examine our obstacleList. Convert their
position into row, column data and update the nodes at that index to be obstacles.

The GridManager has a couple of helper methods to traverse the grid and get the
grid cell data. The following are some of them with a brief description of what they
do. The implementation is simple, so we won't go into the details.

The GetGridCellCenter method returns the position of the grid cell in world
coordinates from the cell index, as shown in the following code:

 public Vector3 GetGridCellCenter(int index) {
 Vector3 cellPosition = GetGridCellPosition(index);
 cellPosition.x += (gridCellSize / 2.0f);
 cellPosition.z += (gridCellSize / 2.0f);
 return cellPosition;
 }

 public Vector3 GetGridCellPosition(int index) {
 int row = GetRow(index);
 int col = GetColumn(index);
 float xPosInGrid = col * gridCellSize;
 float zPosInGrid = row * gridCellSize;
 return Origin + new Vector3(xPosInGrid, 0.0f, zPosInGrid);
 }

The GetGridIndex method returns the grid cell index in the grid from the
given position:

 public int GetGridIndex(Vector3 pos) {
 if (!IsInBounds(pos)) {
 return -1;
 }
 pos -= Origin;
 int col = (int)(pos.x / gridCellSize);
 int row = (int)(pos.z / gridCellSize);
 return (row * numOfColumns + col);
 }

 public bool IsInBounds(Vector3 pos) {
 float width = numOfColumns * gridCellSize;
 float height = numOfRows* gridCellSize;
 return (pos.x >= Origin.x && pos.x <= Origin.x + width &&
 pos.x <= Origin.z + height && pos.z >= Origin.z);
 }

A* Pathfinding

[130]

The GetRow and GetColumn methods return the row and column data of the grid cell
from the given index:

 public int GetRow(int index) {
 int row = index / numOfColumns;
 return row;
 }

 public int GetColumn(int index) {
 int col = index % numOfColumns;
 return col;
 }

Another important method is GetNeighbours, which is used by the AStar class to
retrieve the neighboring nodes of a particular node:

 public void GetNeighbours(Node node, ArrayList neighbors) {
 Vector3 neighborPos = node.position;
 int neighborIndex = GetGridIndex(neighborPos);

 int row = GetRow(neighborIndex);
 int column = GetColumn(neighborIndex);

 //Bottom
 int leftNodeRow = row - 1;
 int leftNodeColumn = column;
 AssignNeighbour(leftNodeRow, leftNodeColumn, neighbors);

 //Top
 leftNodeRow = row + 1;
 leftNodeColumn = column;
 AssignNeighbour(leftNodeRow, leftNodeColumn, neighbors);

 //Right
 leftNodeRow = row;
 leftNodeColumn = column + 1;
 AssignNeighbour(leftNodeRow, leftNodeColumn, neighbors);

 //Left
 leftNodeRow = row;
 leftNodeColumn = column - 1;
 AssignNeighbour(leftNodeRow, leftNodeColumn, neighbors);
 }

Chapter 7

[131]

 void AssignNeighbour(int row, int column, ArrayList neighbors) {
 if (row != -1 && column != -1 &&
 row < numOfRows && column < numOfColumns) {
 Node nodeToAdd = nodes[row, column];
 if (!nodeToAdd.bObstacle) {
 neighbors.Add(nodeToAdd);
 }
 }
 }

First, we retrieve the neighboring nodes of the current node in the left, right, top, and
bottom four directions. Then, inside the AssignNeighbour method, we check the
node to see whether it's an obstacle. If it's not then we push that neighbor node to the
referenced array list, neighbors. The next method is a debug aid method to
visualize the grid and obstacle blocks.

 void OnDrawGizmos() {
 if (showGrid) {
 DebugDrawGrid(transform.position, numOfRows, numOfColumns,
 gridCellSize, Color.blue);
 }
 Gizmos.DrawSphere(transform.position, 0.5f);
 if (showObstacleBlocks) {
 Vector3 cellSize = new Vector3(gridCellSize, 1.0f,
 gridCellSize);
 if (obstacleList != null && obstacleList.Length > 0) {
 foreach (GameObject data in obstacleList) {
 Gizmos.DrawCube(GetGridCellCenter(
 GetGridIndex(data.transform.position)), cellSize);
 }
 }
 }
 }

 public void DebugDrawGrid(Vector3 origin, int numRows, int
 numCols,float cellSize, Color color) {
 float width = (numCols * cellSize);
 float height = (numRows * cellSize);

 // Draw the horizontal grid lines
 for (int i = 0; i < numRows + 1; i++) {
 Vector3 startPos = origin + i * cellSize * new Vector3(0.0f,
 0.0f, 1.0f);
 Vector3 endPos = startPos + width * new Vector3(1.0f, 0.0f,
 0.0f);
 Debug.DrawLine(startPos, endPos, color);
 }

A* Pathfinding

[132]

 // Draw the vertial grid lines
 for (int i = 0; i < numCols + 1; i++) {
 Vector3 startPos = origin + i * cellSize * new Vector3(1.0f,
 0.0f, 0.0f);
 Vector3 endPos = startPos + height * new Vector3(0.0f, 0.0f,
 1.0f);
 Debug.DrawLine(startPos, endPos, color);
 }
 }
}

Gizmos can be used to draw visual debugging and setup aids inside the editor
scene view. OnDrawGizmos is called every frame by the engine. So, if the debug
flags, showGrid and showObstacleBlocks are checked, we just draw the grid with
lines and obstacle cube objects with cubes. Let's not go through the DebugDrawGrid
method, which is quite simple.

You can learn more about gizmos in the following Unity3D
reference documentation at http://docs.unity3d.com/
Documentation/ScriptReference/Gizmos.html.

AStar
The AStar class is the main class that will utilize the classes we have implemented
so far. You can go back to the algorithm section, if you want to review this. We start
with our openList and closedList declarations which are of the PriorityQueue
type as shown in the AStar.cs file:

using UnityEngine;
using System.Collections;

public class AStar {
 public static PriorityQueue closedList, openList;

Next we implement a method called HeuristicEstimateCost to calculate the cost
between the two nodes. The calculation is simple. We just find the direction vector
between the two by subtracting one position vector from another. The magnitude of
this resultant vector gives the direct distance from the current node to the goal node.

 private static float HeuristicEstimateCost(Node curNode,
 Node goalNode) {
 Vector3 vecCost = curNode.position - goalNode.position;
 return vecCost.magnitude;
 }

Chapter 7

[133]

Next, we have our main FindPath method:

 public static ArrayList FindPath(Node start, Node goal) {
 openList = new PriorityQueue();
 openList.Push(start);
 start.nodeTotalCost = 0.0f;
 start.estimatedCost = HeuristicEstimateCost(start, goal);

 closedList = new PriorityQueue();
 Node node = null;

We initialize our open and closed lists. Starting with the start node, we put it in our
open list. Then we start processing our open list.

 while (openList.Length != 0) {
 node = openList.First();
 //Check if the current node is the goal node
 if (node.position == goal.position) {
 return CalculatePath(node);
 }

 //Create an ArrayList to store the neighboring nodes
 ArrayList neighbours = new ArrayList();

 GridManager.instance.GetNeighbours(node, neighbours);

 for (int i = 0; i < neighbours.Count; i++) {
 Node neighbourNode = (Node)neighbours[i];

 if (!closedList.Contains(neighbourNode)) {
 float cost = HeuristicEstimateCost(node,
 neighbourNode);

 float totalCost = node.nodeTotalCost + cost;
 float neighbourNodeEstCost = HeuristicEstimateCost(
 neighbourNode, goal);

 neighbourNode.nodeTotalCost = totalCost;
 neighbourNode.parent = node;
 neighbourNode.estimatedCost = totalCost +
 neighbourNodeEstCost;

 if (!openList.Contains(neighbourNode)) {
 openList.Push(neighbourNode);
 }
 }
 }

A* Pathfinding

[134]

 //Push the current node to the closed list
 closedList.Push(node);
 //and remove it from openList
 openList.Remove(node);
 }

 if (node.position != goal.position) {
 Debug.LogError("Goal Not Found");
 return null;
 }
 return CalculatePath(node);
 }

This code implementation resembles the algorithm that we have previously
discussed, so you can refer back to it, if you are not clear of certain things.

1.	 Get the first node of our openList. Remember our openList of nodes is
always sorted every time a new node is added. So the first node is always the
node with the least estimated cost to the goal node.

2.	 Check if the current node is already at the goal node. If so, exit the while
loop and build the path array.

3.	 Create an array list to store the neighboring nodes of the current node being
processed. Use the GetNeighbours method to retrieve the neighbors from
the grid.

4.	 For every node in the neighbors array, we check if it's already in the
closedList. If not, put it in the calculate the cost values, update the node
properties with the new cost values as well as the parent node data and
put it in openList.

5.	 Push the current node to closedList and remove it from openList. Go back
to step 1.

If there are no more nodes in openList, our current node should be at the target
node if there's a valid path available. Then we just call the CalculatePath method
with the current node parameter.

 private static ArrayList CalculatePath(Node node) {
 ArrayList list = new ArrayList();
 while (node != null) {
 list.Add(node);
 node = node.parent;
 }
 list.Reverse();
 return list;
 }
}

Chapter 7

[135]

The CalculatePath method traces through each node's parent node object and builds
an array list. It gives an array list with nodes from target node to start node. Since we
want a path array from start node to target node we just call the Reverse method.

So this is our AStar class. We'll write a test script in the following code to test all this.
Then set up a scene to use them in.

TestCode class
This class will use the AStar class to find the path from the start node to the goal
node as shown in the following TestCode.cs file:

using UnityEngine;
using System.Collections;

public class TestCode : MonoBehaviour {
 private Transform startPos, endPos;
 public Node startNode { get; set; }
 public Node goalNode { get; set; }

 public ArrayList pathArray;

 GameObject objStartCube, objEndCube;
 private float elapsedTime = 0.0f;
 //Interval time between pathfinding

 public float intervalTime = 1.0f;

First we set up the variables that we'll need to reference. The pathArray is to store
the nodes array returned from the AStar FindPath method.

 void Start () {
 objStartCube = GameObject.FindGameObjectWithTag("Start");
 objEndCube = GameObject.FindGameObjectWithTag("End");

 pathArray = new ArrayList();
 FindPath();
 }

 void Update () {
 elapsedTime += Time.deltaTime;
 if (elapsedTime >= intervalTime) {
 elapsedTime = 0.0f;
 FindPath();
 }
 }

A* Pathfinding

[136]

In the Start method we look for objects with the tags Start and End, and initialize
our pathArray as well. We'll be trying to find our new path at every interval that we
set to our intervalTime property in case the positions of the start and end nodes
have changed. Then we call the FindPath method.

 void FindPath() {
 startPos = objStartCube.transform;
 endPos = objEndCube.transform;

 startNode = new Node(GridManager.instance.GetGridCellCenter(
 GridManager.instance.GetGridIndex(startPos.position)));

 goalNode = new Node(GridManager.instance.GetGridCellCenter(
 GridManager.instance.GetGridIndex(endPos.position)));

 pathArray = AStar.FindPath(startNode, goalNode);
 }

Since we implemented our pathfinding algorithm in the AStar class, finding a path
has now become a lot simpler. First, we take the positions of our start and end game
objects. Then, we create new Node objects using the helper methods of GridManager,
GetGridIndex, to calculate their respective row and column index positions inside
the grid. Once we get that we just call the AStar.FindPath method with the start
node and goal node, and store the returned array list in the local pathArray property.
Next we implement the OnDrawGizmos method to draw and visualize the path found.

 void OnDrawGizmos() {
 if (pathArray == null)
 return;

 if (pathArray.Count > 0) {
 int index = 1;
 foreach (Node node in pathArray) {
 if (index < pathArray.Count) {
 Node nextNode = (Node)pathArray[index];
 Debug.DrawLine(node.position, nextNode.position,
 Color.green);
 index++;
 }
 }
 }
 }
}

Chapter 7

[137]

We look through our pathArray and use the Debug.DrawLine method to draw
the lines connecting the nodes from the pathArray. With that we'll be able to see a
green line connecting the nodes from start to end forming a path, when we run and
test our program.

Scene setup
We are going to setup a scene that looks something similar to the
following screenshot:

 Sample test scene

A* Pathfinding

[138]

We'll have a directional light, the start and end game objects, a few obstacle objects,
a plane entity to be used as ground and two empty game objects in which to put our
GridManager and TestAStar scripts. This is our scene hierarchy:

Scene hierarchy

Create a bunch of cube entities and tag them as Obstacle. We'll be looking for
objects with this tag when running our pathfinding algorithm.

Obstacle nodes

Chapter 7

[139]

Create a cube entity and tag it as Start.

Start node

Then create another cube entity and tag it as End.

End node

A* Pathfinding

[140]

Now create an empty game object and attach the GridManager script. Set the name
as GridManager as well, because we use this name to look for the GridManager
object from our script. Here we can setup the number of rows and columns for our
grid as well as the size of each tile.

GridManager script

Chapter 7

[141]

Testing
Let's hit the Play button and see our A* pathfinding algorithm in action. By
default, once you play the scene Unity3D will switch to the Game view. Since our
pathfinding visualization code is written for debug draw in the editor view, you'll
need to switch back to the Scene view or enable Gizmos to see the path found.

Found path one

A* Pathfinding

[142]

Now try to move the start or end node around in the scene using the editor's
movement gizmo. (Not in the Game view, but the Scene view.)

Found path two

You should see the path updated accordingly if there's a valid path from the start
node to the target goal node, dynamically in real-time. You'll get an error message in
the console window if there's no available path.

Summary
In this chapter, we learned how to implement the A* pathfinding algorithm in the
Unity3D environment. We implemented our own A* pathfinding class as well as
our own grid class, queue class, and node class. We learnt about the IComparable
interface and overriding the CompareTo method. We used debug draw functionalities
to visualize the grid and path formation. With Unity3D's navmesh and navagent
features it may not be necessary for you to implement this pathfinding algorithm on
your own. Nonetheless, it helps you to understand the underlying algorithm behind
the implementation.

In the next chapter, we will look at how to extend the idea behind A* and look at
navigation meshes. With navigation meshes, it will be much easier for us to find a
path over uneven terrain.

Navigation Mesh
In this chapter, we'll learn how to use Unity's built-in navigation mesh generator
that can make path finding for AI agents a lot easier. Unfortunately, this feature is
only available in Unity Pro, so you need to have a license. Or, you can start using the
30-days free trial of Unity Pro (if you have not done so already) to follow along with
the exercises in this chapter. To activate your free trial, navigate to Unity | Manage
License…, and select Activate new license. Check the 30-day free trial option then
click OK, and you should be good to go.

Activating free trial of Unity Pro

Navigation Mesh

[144]

Introduction
AI path finding needs representation of the scene in a particular format. We've seen
that using a 2D grid (array) for A* path finding on a 2D map. AI agents need to
know where the obstacles are, especially the static obstacles. Dealing with collision
avoidance between dynamically moving objects is another subject, primarily
known as steering behaviors. Unity has a built-in navigation feature to generate a
navigation mesh (navmesh) that represents the scene in a context that makes sense
for our AI agents to find the optimum path to the target. This chapter comes with a
Unity project that has four scenes in it. You should open it in Unity and see how it
works to get a feeling of what we are going to build. Using this sample project, we'll
study how to create a navmesh, and use it with AI agents inside our own scenes.

Setting up the map
To get started, we'll build a simple scene, as shown in the following figure. This is
the first scene in our sample project called NavMesh01-Simple.scene. You can use a
plane as a ground object and several cube entities as the wall objects. Later, we'll put
in some AI agents (of course, our all time favorite tanks) to go to the mouse-clicked
position, as in an RTS game.

Scene with obstacles—NavMesh01-Simple.scene

Chapter 8

[145]

Navigation Static
Once we've added the walls and ground, it's important to mark them as Navigation
Static, so that the navmesh generator knows those are the static obstacle objects
to avoid. To do this, select all those objects, click on the Static button, and choose
Navigation Static, as shown in the following figure.

The Navigation Static property

Baking the navigation mesh
Now we're done with our scene. Let's bake the navmesh. Firstly, we need to open the
navigation window. Navigate to Window | Navigation, and you should be able to
see a window like this:

Navigation window

Navigation Mesh

[146]

All these properties are pretty much self-explanatory
and you can check out the following Unity reference
documentation to learn more:

http://docs.unity3d.com/Documentation/
Manual/Navmeshbaking.html

For now, we'll leave with the default values and just click on Bake. You should see
a progress bar baking the navmesh for your scene, and after a while you'll see your
navmesh in your scene, as shown in following diagram.

Navigation mesh baked

Nav Mesh Agent
We're pretty much done with setting up our super simple scene. Now, let's add some
AI agents to see if it works. We'll use our tank model here. But if you're working
with your own scene and don't have this model, you can just put a cube or a sphere
entity as an agent. It'll work the same way.

Chapter 8

[147]

Tank entity

The next step is to add the Nav Mesh Agent component to our tank entity. This
component makes path finding really easy. We don't need to deal with path finding
algorithms like A* anymore. By just setting the destination property of the
component during runtime, our AI agent will automatically find the path itself.

Navigate to Component | Navigation | Nav Mesh Agent to add this component.

Nav Mesh Agent properties

Unity reference for Nav Mesh Agent component can be
found at http://docs.unity3d.com/Documentation/
Components/class-NavMeshAgent.html

One property to note is the NavMesh Walkable property. This specifies the navmesh
layers that this navmesh agent can walk. We'll talk about navigation layers in the
NavMeshLayers section.

Navigation Mesh

[148]

Updating agents' destinations
Now we've set up our AI agent, we need a way to tell this agent where to go and
update the destination of our tanks to the mouse-click position.

So, let's add a sphere entity to be used as a marker object, and then attach the
following Target.cs script to an empty game object. Drag-and-drop this sphere
entity onto this script's targetMarker transform property in the inspector.

The Target.cs class
This is a simple class that does three things:

•	 Gets the mouse-click position using a ray
•	 Updates the marker position
•	 Updates the destination property of all the navmesh agents

The following lines show the code present in this class:

using UnityEngine;
using System.Collections;

public class Target : MonoBehaviour {
 private NavMeshAgent[] navAgents;
 public Transform targetMarker;

 void Start() {
 navAgents = FindObjectsOfType(typeof(NavMeshAgent)) as
 NavMeshAgent[];
 }

 void UpdateTargets(Vector3 targetPosition) {
 foreach (NavMeshAgent agent in navAgents) {
 agent.destination = targetPosition;
 }
 }

 void Update() {
 int button = 0;

 //Get the point of the hit position when the mouse is
 //being clicked
 if(Input.GetMouseButtonDown(button)) {
 Ray ray = Camera.main.ScreenPointToRay(
 Input.mousePosition);

 RaycastHit hitInfo;

Chapter 8

[149]

 if (Physics.Raycast(ray.origin, ray.direction,
 out hitInfo)) {
 Vector3 targetPosition = hitInfo.point;
 UpdateTargets(targetPosition);
 targetMarker.position = targetPosition +
 new Vector3(0,5,0);
 }
 }
 }
}

At the start of the game, we look for all the NavMeshAgent type entities in our game
and store them in our reference NavMeshAgent array. Whenever there's a mouse-
click event, we do a simple raycast to determine the first objects that collide with
our ray. If the ray hits any object, we update the position of our marker and update
each navmesh agent's destination by setting the destination property with the new
position. We'll be using this script throughout this chapter to tell the destination
position for our AI agents.

Now, test run the scene, and click on a point where you want your tanks to go.
The tanks should come as close as possible to that point while avoiding the static
obstacles like walls.

Scene with slope
Let's build a scene with some slopes like this:

Scene with slopes—NavMesh02-Slope.scene

Navigation Mesh

[150]

One important thing to note is that the slopes and the wall should be in contact with
each other. Objects need to be perfectly connected when creating such joints in the
scene with the purpose of generating a navmesh later. Otherwise, there'll be gaps in
navmesh and the agents will not be able to find the path anymore. There's a feature
called Off Mesh Links generation to solve this kind of problem. We'll look at Off
Mesh Links in the Off Mesh Links section later in this chapter. For now, make sure
to connect the slope properly.

A well-connected slope

Next, we can adjust the Max Slope property in the Navigation window's Bake tab
according to the level of slope in our scenes that we want to allow agents to travel.
We'll use 45 degrees here. If your slopes are steeper than this, you can use a higher
Max Slope value.

Max Slope property

Bake the scene, and you should have a navmesh generated like this:

Nav Mesh generated

Chapter 8

[151]

Next, we'll place some tanks with the Nav Mesh Agent component. Create a new
cube object to be used as a target reference position. We'll be using our previous
Target.cs script to update the destination property of our AI agent. Test run the
scene, and you should have your AI agents crossing the slopes to reach the target.

NavMeshLayers
In games with complex environments, we usually have some areas that are harder
to travel in than others, such as a pond or a lake compared to crossing a bridge.
Even though it could be the shortest path to target by crossing the pond directly, we
would want our agents to choose the bridge as it makes more sense. In other words,
we want to make crossing the pond to be more navigationally expensive than using
the bridge. In this section, we'll look at NavMeshLayers, a way to define different
layers with different navigation cost values.

We're going to build a scene as shown in the following figure. There'll be three
planes to represent two ground planes connected with a bridge-like structure and a
water plane between them. As you can see, it's the shortest path for our tank to cross
over the water plane to reach our cube target. But we want our AI agents to choose
the bridge if possible and to cross the water plane only if absolutely necessary, such
as when the target object is on the water plane.

Scene with layers—NavMesh03-Layers.scene

Navigation Mesh

[152]

The scene hierarchy can be seen in the following screenshot. Our game level is
composed of planes, slopes, and walls. We've a tank entity and a destination cube
with the Target.cs script attached.

Scene hierarchy

To create your own NavMeshLayer, navigate to Edit | Project Settings |
NavMeshLayers.

NavMeshLayers

Chapter 8

[153]

Unity reference for Nav Mesh Layers can be found at
http://docs.unity3d.com/Documentation/
Components/class-NavMeshLayers.html

Unity comes with three default layers: Default, Not Walkable, and Jump, each
with potentially different cost values. Let's add a new layer called Water and give
it a cost of 5.

Next, select the water plane. Go to the Navigation window and under the Object
tab, set Navigation Layer to Water.

Water layer

Bake the navmesh for the scene, and run it to test it. You should see that the AI
agents now choose the slope rather than going through the plane marked as the
water layer because it's more expensive to choose that path. Try experimenting with
placing the target object at different points in the water plane. You will see that the
AI agents will sometimes swim back to the shore and take the bridge, rather than
trying to swim all the way across the water.

Off Mesh Links
Sometimes there could be some gaps inside the scene that can make the navigation
meshes disconnected. For example, our agents will not be able to find the path if our
slopes are not connected to the walls in our previous examples. Or we could have set
up points where our agents could jump off the wall and onto the plane below. Unity
has a feature called Off Mesh Links to connect such gaps. Off Mesh Links can either
be set up manually, or generated automatically by Unity's navmesh generator.

Navigation Mesh

[154]

Here's the example scene that we're going to build in this example. As you can
see, there's a small gap between the two planes. Let's see how to connect these two
planes using Off Mesh Links.

Scene with off mesh links—NavMesh04-OffMeshLinks.scene

Generated Off Mesh Links
Firstly, we'll use autogenerated Off Mesh Links to connect the two planes. The first
thing to do is to mark these two planes as Off Mesh Link Generation static in the
property inspector, as shown in the following screenshot:

Off Mesh Link Generation static

Chapter 8

[155]

Go to the Navigation window, and notice the following properties under the Bake
tab. You can set the distance threshold to autogenerate Off Mesh Links.

Generated Off Mesh Links properties

Click on Bake, and you should have Off Mesh Links connecting two planes like this:

Generated Off Mesh Links

Now our AI agents can traverse and find the path across both planes. Agents will
be essentially teleported to the other plane, once they have reached the edge of the
plane and found the Off Mesh Link. Of course, if teleporting agents are not what we
want, we had better put a bridge in for the agents to cross.

Navigation Mesh

[156]

Manual Off Mesh Links
If we don't want to generate Off Mesh Links along the edge, and we want to force
the agents to come to a certain point to be teleported to another plane, we can also
manually set up the Off Mesh Links. Here's how:

Manual Off Mesh Links setup

This is our scene with a significant gap between two planes. We placed two pairs
of sphere entities on both sides of the plane. Choose a sphere, and add an Off Mesh
Link by navigating to Component | Navigation | Off Mesh Link. We only need to
add this component on one sphere. Next, drag-and-drop the first sphere to the Start
property, and the other sphere to the End property.

Off Mesh Link component

Chapter 8

[157]

Unity reference for Off Mesh Links can be found at
http://docs.unity3d.com/Documentation/
Components/class-OffMeshLink.html.

Manual Off Mesh Links generated

Go to the Navigation window and bake the scene. The planes are now connected
with the manual Off Mesh Links that can be used by AI agents to traverse even
though there's a gap.

Navigation Mesh

[158]

Summary
In this chapter, we learned how to generate and use navigation meshes to
represent the scene for path finding purposes. We studied how to set up different
navigation layers with different costs for path finding. We used the Nav Mesh
Agent component to easily find the path and move toward the target using the
destination property. We set up Off Mesh Links to connect the gaps between
the navigation meshes using both the autogeneration feature and manual set up
with the Off Mesh Link component. With all this information, we can now easily
create simple games with fairly complicated AI. For example, you can try to set the
destination property of AI tanks to the player's tank's position and make them follow
it. And, using simple FSMs, they can start attacking the player once they reach a
certain distance. Our FSM has taken us far, but it has its limits. In the next chapter,
we will learn about Behavior Trees, and how they can be used to make AI decisions
in even the most complex of games.

Behavior Trees
Behavior trees are another way of controlling states and behaviors of our game
characters. They are also an alternative to finite state machines (FSMs), which
was described in Chapter 2, Finite State Machines. Even though FSMs are simple to
implement, intuitive, and easy to understand, it's hard to maintain and scale once
the logic becomes too complex. One of the reasons for this is that in state machines,
all the transitions between states have to be precisely defined. So, as the size of state
machine becomes bigger, updating the structure of a state machine with all the
transitions becomes extremely complex. So AI developers have moved on to find
new ways and other techniques, such as hierarchical FSM (HFSM) and Hierarchical
Task Networks (HTNs). Behavior trees are one of them that have become popular
with the use of AAA games such as Halo, Crysis, and Spore.

Since this book is focused on implementing AI in Unity3D, we won't cover
implementing the whole behavior tree system from scratch. Luckily there's a powerful
plugin called Behave for Unity3D to implement behavior trees. So we'll be using this
in this chapter as well as studying the general components and ideas of behavior trees
while implementing simple demos.

Behavior Trees

[160]

Behave plugin
Behave is a system for Unity3D to design game objects' behavior logic using behavior
trees. It was designed and developed by Emil Johansen ("AngryAnt") who's currently
working at Unity Technologies. The Behave system comes with a simple and easy
to use drag-and-drop logic designer. Game designers can use this interface to set
up the behavior logic while the developers implement the real actions. Since it's the
easiest toolset to implement behavior trees in Unity3D, we'll be using this system to
implement the agents' behaviors in this chapter.

The following are the steps to be performed for downloading and installing Behave:

1.	 First, let's go and download Behave from Unity Asset Store. Inside Unity3D,
navigate to Window | Asset Store, and then search for behave.

2.	 Once you find Behave, click on the arrow beside the Download button and
choose Download and Import. This will download the Behave system and
import it into your currently opened Unity3D project. The latest version of
Behave is Version 1.4, and is free. So, we'll be using this version. If you're
using an earlier version, there could be minor or major changes and the code
may not work out of the box.

Behave on the Asset Store

Chapter 9

[161]

3.	 Once you've imported Behave into your project you will see a folder called
Behave in your project directory.

Behave library imported

You don't really need to worry about any of the contents of this folder. Once it's there
we are ready to use the system.

Workflow
We'll briefly look at the general workflow of using Behave to implement behavior
trees. After we look at how each component works individually, we will put the
pieces together and build a demo involving robots and aliens. Let's get started by
performing the following steps:

Behavior Trees

[162]

1.	 To use the Behave system, we first need to create a Behave library. So let's
create one now, and call it AgentBehaveLib.

Create a new Behave library

2.	 Select your newly created AgentBehaveLib Behave library and click on Edit
library from the property inspector.

A Behave library properties

Chapter 9

[163]

3.	 The Behave browser panel will show up as shown in the following
screenshot. Here you can create collections that hold actual behavior trees.

Create new collection

4.	 Create a new collection. Leave the default name. Then, while this collection is
selected, create a new tree. Leave the default name here as well. Your Behave
browser should look similar to the following screenshot:

Behave browser

5.	 Select the behavior tree you just created and the Behave editor window
should look something similar to the following screenshot. If you can't see
the editor, navigate to Window | Behave tree editor to make it active.

Behavior Trees

[164]

There are six basic elements in creating behavior trees. It's best to use a tutorial style
to study them. So, let's get started with the action nodes.

Behave tree editor

Action
Actions are the most basic nodes that actually execute something in behavior trees.
Let's create a new action by dragging the action node into the Behave editor. Then
link it up with the root node by clicking and dragging the root node until the link
hooks into the top box of the action node. With the action node selected, rename the
action from the Inspector to MyAction as shown in the following screenshot. This
setup basically tells the Behave system that this behavior tree will execute this action
a fixed number of times in a second (as provided in the Frequency variable of the
node property). Make sure you set the frequency value to something besides zero, so
that the functions we create later will actually be called. You can also find additional
class reference information inside the property inspector panel.

Chapter 9

[165]

Action node properties

If you set up the action node properties accordingly, your tree diagram should look
something, as shown in the following screenshot:

An action node

Behavior Trees

[166]

Interfacing with the script
Before we can access this behavior tree from a script we need to build or compile
this behavior tree. Behave will compile the tree to a DLL so that we can reference
and implement our own custom actions from our scripts. It is important to note
that whenever we change anything inside the library, we will have to recompile
the library before we try and use what we added. There are two options to build a
Behave library either debug or release. These build options only apply to our Behave
library and not to our actual game. We'll be using the debug build in this tutorial that
will allow us to debug our behavior trees using Behave's built-in visual debugger.

So, to compile your behavior tree just select the Behave library (in this case
AgentBehaveLib) and then click on Build library debug from the inspector panel.
After a moment you'll see two new files are added to your project directory. You
might need to refresh your project folder to see the changes. With that successfully
built library we are now ready to implement the actions in our script. So let's create a
new C# script and call it AgentController.

The first thing we need to do is to import Behave runtime library which can be found
under the Behave.Runtime namespace. And we need to implement the IAgent
interface defined by the Behave system so that we can handle our own actions.

The code in the AgentController.cs file is as follows:

using UnityEngine;
using System.Collections;
using Behave.Runtime;
using Tree = Behave.Runtime.Tree;

public class AgentController : MonoBehaviour, IAgent {

 Tree m_Tree;

Then we declare a Tree variable to reference our behavior tree. Then inside our
Start method, we use the InstantiateTree static method of our library to create
an instance of our behavior tree. The BLAgentBehaveLib library is generated by
Behave using this naming pattern, BL{YourLibraryName}. Behave uses that kind of
naming convention, as you will see later, and it's important to keep the names the
way it needs. The InstantiateTree method accepts two parameters: the tree type
to instantiate and the reference to a class that implements the IAgent interface, in
our case we just pass in this to refer the current class. Notice that the tree type is a
combination of what we called our collection and what we called our tree.

 IEnumerator Start () {
 m_Tree = BLAgentBehaveLib.InstantiateTree(
 BLAgentBehaveLib.TreeType.NewCollection1_NewTree1, this);

Chapter 9

[167]

 while (Application.isPlaying && m_Tree != null) {
 yield return new
 WaitForSeconds(1.0f/m_Tree.Frequency);
 AIUpdate();
 }
 }

Behave has a real-time loop that calls our own update method, AIUpdate is the update
method we created and is called in a particular interval based on the frequency
property specified in our tree. Inside our AIUpdate method we just called the Tick
method of our tree instance. [Note: Behave uses the term tick instead of update.]

 void AIUpdate() {
 m_Tree.Tick();
 }

There are three methods that we need to implement for our IAgent interface. They
are as follows:

BehaveResult Tick (Tree sender, bool init);
void Reset (Tree sender);
int SelectTopPriority (Tree sender, params int[] IDs);

So we'll be implementing them. The Tick and Reset methods are called whenever
an action or a decorator (which we'll discuss later) is, well ticked or reset. If we
have implemented our own handler methods for our actions, these methods will
be used instead:

 public BehaveResult Tick(Tree sender, bool init) {
 Debug.Log("Ticked Received by unhandled " +
 (BLAgentBehaveLib.IsAction(sender.ActiveID) ? "Action " :
"Decorator ") +
 " ... " + (BLAgentBehaveLib.IsAction(sender.ActiveID) ?
 ((BLAgentBehaveLib.ActionType)sender.ActiveID).ToString() :
 ((BLAgentBehaveLib.DecoratorType)sender.ActiveID).ToString()));
 return BehaveResult.Success;
 }

 public void Reset (Tree sender) {

 }

Behavior Trees

[168]

Inside our generic Tick method, we just print out the name of the action or decorator
node from the sender parameter that receives this tick, as follows:

 public int SelectTopPriority (Tree sender, params int[] IDs) {
 return 0;
 }
}

Again, we'll come back to this SelectTopPriority method in a short while. Right
now, we'll try to run this behavior. Just create an empty game object and attach this
AgentController script to it. Then, hit play. If you follow along with this whole
section, you should be able to see the nice log messages in the console as shown in
the following screenshot:

Unhandled Action results

What that means is now our behavior tree is working together with our script. But as
we mentioned before, since we don't have our own handler for the MyAction node,
the default Tick method is called and it's printing this message. So let's go back to
our script and write our own handler function for the MyAction node, as given in
the following code:

 public BehaveResult TickMyActionAction (Tree sender) {
 Debug.Log ("MyAction ticked!");
 return BehaveResult.Success;
 }

To implement your own action handler you just need to follow this specific naming
pattern, which is BehaveResult Tick{Name}Action (Tree sender). In this
example, {Name} is the name of our action, MyAction. Now if you play the project
you'll see the log message printed by your own action handler as follows:

Action results

Chapter 9

[169]

With that you should have a basic understanding of how to use Behave. Next we'll
move on to other elements that are used to control the execution flow of actions in
our behavior tree.

Decorator
Decorators allow for a conditional entry before executing any node connected to it.
Custom handlers for decorators can be implemented in the same way we did for
actions previously, but following the naming pattern of BehaveResult Tick{Name}
Decorator (Tree sender). If none is defined, the default Tick method defined in
IAgent will be used. So, let's set up our behavior in a new tree or replace the tree we
had before with a decorator node as shown in the following screenshot. If you create
a new tree, make sure to update the BLAgentBehaveLib.TreeType variable in our
Start function to point to whichever tree you are using. What we want to do is if
our new decoration, ShouldDoMyAction, returns success, we'll execute the MyAction
action. Otherwise, we'll not run MyAction.

Decorator

The handler method is defined based on the following procedures:

•	 If TickDecorator returns Success, the child of the decorator will be ticked
and the decorator will return the result of that tick

•	 If TickDecorator returns Failure, the child of the decorator will not be
ticked and the decorator will return Success, which means task completed

•	 If TickDecorator returns Running, the child will be ticked and regardless of
the result of this tick, the decorator will return Running

Behavior Trees

[170]

Now, we'll write our own handler method for the ShouldDoMyAction decorator.
Please note that the method name must be TickShouldDoMyActionDecorator
as follows:

 private bool shouldDo = true;

 public BehaveResult TickShouldDoMyActionDecorator (Tree sender) {
 shouldDo = !shouldDo;
 if (shouldDo) {
 Debug.Log ("Should Do!");
 return BehaveResult.Success;
 }
 else {
 Debug.Log ("Shouldn't Do!");
 return BehaveResult.Failure;
 }
 }

If you run this script, you'll see if the decorator returns Success the child node is also
called and you'll see the log message printed by the TickMyActionAction handler
method, as shown in the following screenshot:

Decorator results

Chapter 9

[171]

Behave debugger
We can use Behave's built-in debugger to visualize the tree states in live if we build
our Behave library for debugging. So let's examine our decorator's state in live using
this debugger. First, play the project and navigate to Window | Behave debugger to
show the debugger window. At the top of the window, you will see a Tree instances
label. When we play the scene, the name of the currently-loaded tree will appear to
the right of this label. Click on the name of the tree to make the tree appear inside the
debugger window, as shown in the following screenshot:

Behave debugger

Behavior Trees

[172]

Sequence
Sequences will tick each of their child nodes connected one at a time from left to
right. The actual placement of the nodes is irrelevant. The nodes coming out of the
bottom of the sequence determine the order. If a child returns Failure, the sequence
also returns Failure from that point. But if the child returns Success, the sequence
will move on to the next child inline, and then returns Running. Let's set up a tree
with a sequence node and connect three actions, FadeIn, FadeOut, and GotoGame.

Sequence

Three handler methods for our actions are implemented, and we just simply return
BehaveResult.Success as follows:

 public BehaveResult TickFadeInAction (Tree sender) {
 Debug.Log ("FadeIn ticked!");
 return BehaveResult.Success;
 }

 public BehaveResult TickFadeOutAction (Tree sender) {
 Debug.Log ("FadeOut ticked!");
 return BehaveResult.Success;
 }

 public BehaveResult TickGotoGameAction (Tree sender) {
 Debug.Log ("GotoGame ticked!");
 return BehaveResult.Success;
 }

Chapter 9

[173]

If we run the project now, you'll see the three actions discussed previously are
getting called sequentially.

If a child returns Running, the sequence will also return Running from that point and
that same child will be ticked again the next time the sequence is ticked.

Once the sequence reaches the end of its child list, it returns Success and the first
child in the line will be ticked on the next tick of the sequence.

Exploring Behave results
Now let's update our handler methods to play with other Behave results. We'll
increase the alpha value during the FadeIn action, and until it reaches 255, we'll
return Running from the FadeIn action as given in the following code:

 private int alpha = 0;
 private int gameLoading = 0;

 public BehaveResult TickFadeInAction (Tree sender) {
 if (gameLoading >= 100) {
 return BehaveResult.Failure;
 }

 alpha++;
 Debug.Log ("FadeIn ticked! Alpha:" + alpha.ToString());
 if (alpha < 255) {
 return BehaveResult.Running;
 }
 else {
 alpha = 255;
 return BehaveResult.Success;
 }
 }

So, the sequence will not move on to next child and will keep ticking this FadeIn
action. Only when the alpha reaches to 255, this action will return Success and the
sequence will move on to the next child node. Once we have reached the GotoGame
action and until the gameLoading progress has reached 100 we'll only return
Failure so that will not start this sequence again until the loading is complete.

Behavior Trees

[174]

The next action is the FadeOut action and it'll decrease the alpha value. Similar to
FadeIn, until it reaches 0, we'll only return Running. So, the sequence will also return
Running and when the sequence is ticked the next time, it'll tick starting from this
action. This is something to note with the Running result that it'll resume from that
child node and not from the left-most child.

 public BehaveResult TickFadeOutAction (Tree sender) {
 alpha--;
 Debug.Log ("FadeOut ticked! Alpha:" + alpha.ToString());	
 if (alpha > 0) {
 return BehaveResult.Running;
 }
 else {
 alpha = 0;
 return BehaveResult.Success;
 }
 }

Finally when the FadeOut action returns Success, the sequence will move on to
the GotoGame action and increase the gameLoading value. Once this value reaches
100, we'll return Success, otherwise, we'll only return Running, as given in the
following code:

 public BehaveResult TickGotoGameAction (Tree sender) {
 gameLoading++;
 Debug.Log ("GotoGame ticked! Game loading: " +
 gameLoading.ToString());	
 if (gameLoading < 100) {
 return BehaveResult.Running;
 }
 else {
 return BehaveResult.Success;
 }
 }

We just used all three Behave results, Success, Failure, and Running in the
preceding example. Before we test this, we need to temporary increase the
Frequency value (for example, 25). Otherwise it will take it 10 minutes for our
sequence to complete! Now, let's move on to other behavior tree elements.

Chapter 9

[175]

Selector
Selectors are like a nested if statements and tick each of their children once at a time
from left to right. If a child returns Success, the selector also returns Success from
that point. But if a child returns Failure, the selector will move on to the next child
in line and return Running. If a child returns Running, so does the selector and that
same child will be ticked again the next time the selector is ticked. Once the selector
reaches the end of its child list, it returns Failure and starts ticking from the first
child again on the next tick of the selector.

In this exercise, we'll set up a tree as shown in the following screenshot; a selector
and three actions: Patrol, Attack, and Idle.

Selector

In our patrol action we'll decrease the distance with the enemy variable and check if
it's close enough to this agent. If it's not close enough we'll just return Running and
the selector will also return Running from this point, as follows:

 private int distWithEnemy = 200;
 private int enemyHealth = 100;

 public BehaveResult TickPatrolAction (Tree sender) {
 if (distWithEnemy > 100) {
 distWithEnemy-=10;

Behavior Trees

[176]

 Debug.Log("Enemy is getting closers! " + distWithEnemy.
ToString());
 return BehaveResult.Running;
 }
 else {
 Debug.Log("Enemy spotted!");
 return BehaveResult.Failure;
 }
 }

Once the distance variable is less than 100 we'll return Failure, meaning that the
enemy is close enough and we shouldn't stick at patrol action anymore. And our
selector will move on to next child node, which is the attack action in our case.

We attack our enemy and decrease it's health in our attack action. While during
the attack we will return Running. And only when the enemy is dead we return
Failure, meaning that our enemy is now dead and we shouldn't attack anymore.
Then, the selector will move on to next child node, which is the idle action,
as follows:

 public BehaveResult TickAttackAction (Tree sender) {
 enemyHealth-=5;
 Debug.Log("Attacking enemy! enemy health: " + enemyHealth.ToString
());
 if (enemyHealth < 10) {
 Debug.Log("Enemy's dead!");
 return BehaveResult.Failure;
 }
 else {
 return BehaveResult.Running;
 }
 }

 public BehaveResult TickIdleAction (Tree sender) {
 distWithEnemy = 200;
 enemyHealth = 100;
 Debug.Log("Idling for a while!");
 return BehaveResult.Success;
 }

Chapter 9

[177]

So if you run this behavior tree you should see a list of log messages in your console
that looks something similar to the following screenshot. Our AI agent is now
patrolling, checking the distance with enemy, attacking accordingly to our behavior
tree and script:

The battle between robots and aliens

Priority selector
When ticked, a priority selector will query the agent through its SelectTopPriority
method for the highest priority of its outgoing connections. The priority selector will
then tick the connection corresponding to the returned index ID and its return value
is passed on. If the ticked connection returns Running, then the priority selector will
not requery priority on next tick. If a priority query returns the Unknown priority ID
or an ID outside the queried set, the priority selector will return Failure.

Behavior Trees

[178]

So let's create a tree as shown in the following figure with a priority selector and
three actions, Eat, Sleep, and Play.

E
a
t
P
r
i
o
r
it
y

P
l
a
y
P
r
i
o
r
it
y

Eat Sleep Play

S
l
e
e
p
P
r
i
o
r
it
y

Priority Selector

It's important to note that the orders of output connections are important, as their
index values will be used to reference from the script. So, in this sample connection
index, the eat action would be 0, sleep would be 1, and play would be 2. And our
SelectTopPrioirty method is implemented as follows:

 private bool isHungry = true;
 private bool isSleepy = true;

 public int SelectTopPriority (Tree sender, params int[] IDs) {
 if (isHungry) {
 isHungry = false;
 isSleepy = true;
 return IDs[0]; //eat
 }
 else if (isSleepy) {
 isSleepy = false;
 return IDs[1]; //sleep
 }
 else {
 isHungry = true;
 return IDs[2]; //play
 }
 }

Chapter 9

[179]

We give priority to the eat action if isHungry is true and the sleep action if isSleepy
is true. Otherwise we choose the play action. Unlike sequences and selectors, priority
selectors don't need to go through in order, and instead we can straight away return
a relevant action based on the conditions.

What if you need multiple priority selectors in one tree?

A quick Internet search leads to an answer from AngryAnt
on Github's Bahave issues list that suggests to use a selector's
context variable to identify which selector is being called in the
SelectTopPriority method.

You can find this and other solutions at
https://github.com/AngryAnt/Behave-release/issues/.

Parallel
The parallel node ticks all of its children each time it is ticked from left to right.
There are two important settings for the parallel node called child completion and
component completion. The child completion parameter determines how the child's
return values are handled as follows:

•	 If set to SuccessOrFailure, a child output is marked as done whenever that
child returns success or failure

•	 If set to Success, that child will only get the done stamp if it returns
Success. A return of Failure will result in the parallel component returning
Failure after having ticked all the children

•	 The Failure setting works in the same way. The child will only get the done
stamp if it returns Failure

The component completion parameter determines when the parallel node returns
Success based on the child node's done stamp as follows:

•	 If set to One, the parallel component will return Success at the end of the
first tick where one child's output has been marked as done

•	 If it is set to All, the parallel component will continue running until all
children have been marked as done

•	 Until the parallel node can return either Success or Failure, each tick on it
will result in Running

Behavior Trees

[180]

It'd be easier to understand if we look through an example. So, let's set up a tree
with a sequence node at the root, a parallel node with two actions, and another
action connected to the sequence node. It should look something similar to the
following screenshot:

Parallel node

We'll set the Component completion variable on the parallel node to All and the
Child completion variable to Success. So, that means if all the actions, CheckEmail
and ListenMusic, return Success, they'll be marked as done and the parallel node
will return Success. Otherwise, it'll return Failure, and thus the parent sequence
node will also return Failure from that point, resulting in the work action, which
never gets called.

So, let's implement the action handlers for CheckEmail and ListenMusic. We'll
return Failure from the ListenMusic action as given in the following code and see
what happens:

 public BehaveResult TickCheckEmailAction (Tree sender) {
 Debug.Log("Checking email");
 return BehaveResult.Success;
 }

 public BehaveResult TickListenMusicAction (Tree sender) {
 Debug.Log("While listening music!");
 return BehaveResult.Failure;
 }

Chapter 9

[181]

You'll notice that the work action was never called. Then change the ListenMusic
action code to return Success. Now all the actions under the parallel node return
Success, so it'll also return Success and the sequence will continue to the work action.

Reference
When you create another behavior tree in your collection, that tree will be available
in other trees as a reference. When references are ticked, the tree set in the parameter
of the reference will be ticked and the reference will return the result of that tree.
References are a nice way to organize various different behavior trees in your project.

NewCo

Reference node

The Robots versus Aliens project
This chapter comes with a sample project called Robots versus Aliens that
demonstrates the use of Behave behavior trees in a real-game prototype. Open the
project in Unity3D and we'll walk through briefly. The game demo and the agents' AI
are pretty simple. This is how the scene is set up, as shown in the following screenshot:

Scene hierarchy

Behavior Trees

[182]

There are two AI agents in this game, robot and alien. At the start of the game, units
from each side will be spawned and each of them will march toward the enemy's
base. The Alien base looks similar to the following screenshot:

Alien base

And the Robot base looks similar to the following screenshot:

Robot base

Once they are at a certain distance they'll start attacking, and once the other side has
died it'll move forward again until they reach the base. Once they reach the base,
they'll just attack the base. Click on AgentBehaveLibrary in the project panel and
click on Edit Library from the property inspector. We have one collection and one
tree called AgentAI, as shown in the following screenshot:

Chapter 9

[183]

Behave browser

This is how their AI behavior tree is structured, as shown in the following screenshot:

Robot versus Alien behavior tree

Behavior Trees

[184]

There are three main scripts in this project, AlienController for the alien AI,
RobotController for the robot AI and the base AgentAI class, which is inherited by
both of the controller classes. You can run through the project and check the action
states using the Behave debugger. We'll not list and go through all the code here
since all the scripts are well commented on, and you should be able to understand it
by reading it yourself.

Robots versus Aliens

Summary
This chapter introduces behavior trees in general and uses the Behave system to
implement such behavior trees in Unity3D. There are six basic components you can
use in Behave behavior tree; action, decorator, parallel, selector, priority selector,
and sequence. Each has its own purpose and we briefly covered each of them with
respective samples. Lastly here are a few things to remember while using Behave.
You have to rebuild your library whenever you make changes to the trees so that
the changes are also reflected in compiled code library. If your tree is not getting any
ticks, you should check the frequency of your tree and make sure it's not set to zero.
You need to make sure that you're instantiating the correct tree type that you want to
use in your InstantiateTree statement. This chapter should be sufficient for you to
get started using behavior trees in your game. In the next chapter, we will pull from
what we have learned into building one final project.

Putting It All Together
Over the previous nine chapters, we looked at various AI techniques and built some
simple demo applications using Unity3D. This is the final chapter in our book and
we'll apply some of those techniques in a better game example. The techniques
we'll be using in this chapter include pathfinding, finite-state machines (FSMs) and
flocking behavior together with some other generic game features, such as building
classes for weapons and ammos. So unlike the other chapters this one should be a bit
more fun. First we will create the car. Then we will give it some AI. After that we will
outfit our cars with weapons for battle. Let's get started.

In this chapter, we'll be building a simple vehicular combat game inspired by the
popular Twisted Metal series on the PlayStation platform. So, of course, there'll be
cars and gunfights and explosions, but it will be much simpler in our version. This
project after all is still a demo, and we will not be building a complete game with
scoring systems, power ups, menu screens, and customization stuff. So in a scaled
down version of our vehicular combat game, we'll implement a player-controlled car
and an AI class for opponent cars. The player car will be equipped with two different
weapons; a normal gun with bullets and a missile launcher that will track down if
targeted at an enemy car.

Putting It All Together

[186]

Scene setup
So let's get started with how our scene has been structured.

The objects in the hierarchy

We have four AI cars grouped under the AICars entity and one player-controlled
car entity.

The realistic car model, car movement behaviors and camera
scripts were based on the Unity3D Car Tutorial project. You
can download and learn more about it at http://u3d.as/
content/unity-technologies/car-tutorial/.

Chapter 10

[187]

We have also set up waypoints for AI cars to patrol and a flock controller group
with the objects as child entities under it. If you want to build a more realistic
environment you could add other types of light, and build a light map to generate
shadows for an offline mode. But in this demo, we'll just use a directional light to
simply light up the scene. The recticle player game object is used to reference the
target position pointed by the mouse. In addition to static block obstacles we also
have dynamic obstacles that are affected by physics and can be destroyed by our
weapons. So this is what our little scene looks like:

How the scene looks from above

Putting It All Together

[188]

Tags and layers
Before we start scripting there's one important step to set up, which is to configure
tags used in our game. Tags and layers can be set up through Edit | Project
Settings | Tags. We can use either object names or tags when referencing and
identifying game objects in the scene from a script using methods like GameObject.
FindWithTag(). Layers are mostly used while setting a culling mask for cameras to
render only the selected parts of the scene, and by lights to illuminate only parts of
the scene. In this project, we're using layers to only detect collision between specific
layers. We'll see more on that later, when we use them in scripting. For now, just take
note that tags and layers are set up as shown in the following screenshot:

Tags and layers used in our game

Chapter 10

[189]

Vehicles
As mentioned earlier the car model and behavior scripts are based on the Unity3D
car tutorial. Some of the scripts written in JavaScript were converted to C# just to
make them consistent.

Our car outfitted with weapons

We added three additional components to our base car model. They are missile
launchers on each side of the car body and a normal gun model with a rotatable
turret on the top. Also, take note that the player car uses the Player tag and enemy
cars use the AICar tag that we defined earlier.

Modifications added to our car

Putting It All Together

[190]

Player car controller
Player car has a few different scripts attached to it. Basically Car.cs and
PlayerCarController.cs take care of the car movement in a realistic way. Since
realistic car physics is a huge subject, and as you can also learn from the Unity3D
car tutorial, we'll be looking more into our project specific scripts and controllers in
this chapter. The following is our PlayerWeaponController class that controls the
aiming and shooting of our two different weapons:

using UnityEngine;
using System.Collections;

public class PlayerWeaponController : MonoBehaviour{
 public WeaponGun gun;
 public WeaponMissile[] missile; //Left and Right missile pod
 public Transform Turret;

 //The Recticle object, the mouse cursor graphic
 private Transform recticle;

 // Use this for initialization
 void Start () {
 if (!recticle)
 recticle = GameObject.Find("Recticle_Player").transform;
 }

 // Update is called once per frame
 void Update () {
 //Shoot laser from the turret
 if (Input.GetMouseButtonDown(0)) {
 gun.Shoot();
 }
 else if (Input.GetMouseButtonUp(0)) {
 gun.StopShoot();
 }

 //Shoot missile from the turret
 if (Input.GetMouseButtonDown(1)) {
 missile[1].Shoot();
 }
 else if (Input.GetMouseButtonUp(1)) {
 missile[1].StopShoot();
 }

Chapter 10

[191]

 //Rotate the turret
 //AIMING WITH THE MOUSE
 //Generate a plane that intersects the transform's
 //position with an upwards normal.
 Plane playerPlane = new Plane(Vector3.up, transform.position);

 // Generate a ray from the cursor position
 Ray RayCast =
 Camera.main.ScreenPointToRay(Input.mousePosition);

 // Determine the point where the cursor ray intersects the
 //plane.
 float HitDist = 0;

 if (playerPlane.Raycast(RayCast, out HitDist)) {
 // Get the point along the ray that hits the calculated
 //distance.
 Vector3 targetPoint = RayCast.GetPoint(HitDist);

 //Set the position of the Recticle to be the same as the
 //position of the mouse on the created plane

 recticle.position = targetPoint;
 Turret.LookAt(recticle.position);
 }
 }
}

We begin with taking reference entities for missile weapons and the rotatable turret.
We have yet to create the WeaponGun class or the WeaponMissle class, but we will,
later on in the chapter. The recticle is a separate empty game object in our scene. In
the start method, we try to find that object in the scene, and store a reference in our
local recticle. Then in our Update method, we use the left mouse button click event
to trigger normal bullet shooting and the right mouse button to shoot missiles. We
then pick the current position of the mouse pointer in 2D space and convert it into
3D space by raycasting. This has been explained in Chapter 2, Finite State Machines,
in the section titled Controlling the tank. Then the turret object attached to the car is
rotated to look at that direction, and also the recticle position is updated. This
position of the recticle image is updated in real-time as well.

Putting It All Together

[192]

AI Car Controller
We will apply the AdvancedFSM framework that we built in Chapter 2, Finite State
Machines, to implement the enemy car's AI. The AICarController class is extended
from the AdvancedFSM class and set ups the FSM framework.

using UnityEngine;
using System.Collections;

public class AICarController : AdvancedFSM {
 protected override void Initialise() {
 //Start Doing the Finite State Machine
 ConstructFSM();

 //Get the target enemy(Player)
 GameObject objPlayer =
 GameObject.FindGameObjectWithTag("Player");
 playerTransform = objPlayer.transform;

 if (!playerTransform)
 print("Player doesn't exist.. Please add one with " +
 "Tag named 'Player'");
 }

We have to make sure that there's a player object with the tag Player in the scene. If
found, we'll store this object reference in the playerTransform variable. Then we set
up our transitions and states in the ConstructFSM method.

 //Construct the Finite State Machine for the AI Car behavior
 private void ConstructFSM() {
 //Get the list of points
 pointList = GameObject.FindGameObjectsWithTag("WandarPoints");
 Transform[] waypoints = new Transform[pointList.Length];
 int i = 0;
 foreach (GameObject obj in pointList) {
 waypoints[i] = obj.transform;
 i++;
 }

 PatrolState patrol = new PatrolState(waypoints);
 patrol.AddTransition(Transition.SawPlayer,
 FSMStateID.Chasing);
 patrol.AddTransition(Transition.NoHealth, FSMStateID.Dead);

Chapter 10

[193]

 ChaseState chase = new ChaseState(waypoints);
 chase.AddTransition(Transition.LostPlayer,
 FSMStateID.Patrolling);
 chase.AddTransition(Transition.ReachPlayer,
 FSMStateID.Attacking);
 chase.AddTransition(Transition.NoHealth, FSMStateID.Dead);

 AttackState attack = new AttackState(waypoints);
 attack.AddTransition(Transition.LostPlayer,
 FSMStateID.Patrolling);
 attack.AddTransition(Transition.SawPlayer,
 FSMStateID.Chasing);
 attack.AddTransition(Transition.NoHealth, FSMStateID.Dead);

 DeadState dead = new DeadState();
 dead.AddTransition(Transition.NoHealth, FSMStateID.Dead);

 AddFSMState(patrol);
 AddFSMState(chase);
 AddFSMState(attack);
 AddFSMState(dead);
 }

We set up a couple of points in our scene to use as waypoints for our AI cars to
navigate in the scene.

Our scene needs a lot of points

Putting It All Together

[194]

These waypoints use the tag WandarPoints. So the first thing we have to do, while
constructing our FSM, is to find all those points tagged as WandarPoints and pass
them to our AI states so that they are aware of their environment.

Patrol Points tagged as WandarPoints

After that, we create states and transition triggers and adding into our
FSM framework.

Finite State Machines (FSMs)
We need to set up an update loop that will call the Reason and Act methods from
our various State classes. We'll look at the implementation of these states in a while.

 protected override void CarFixedUpdate() {
 CurrentState.Reason(playerTransform, transform);
 CurrentState.Act(playerTransform, transform);
 }

Since we separate the different states of our AI car into different classes, our update
method is much simpler. We only need to call the reason and act methods of the
current state of the AI. To represent the FSM model of our AI cars in a state transition
diagram, it would look something like this.

no health
reach player

lost player
saw player

Attack

Patrol Chase

Dead

no health no health

saw player

lost player

FSM for the AI enemy car

Chapter 10

[195]

And the last part is taking damage based on collision with either bullets or missiles.
Once the health reaches less than or equal to zero, we'll play a nice physics-based
explosion effect, destroy the object, and finally remove it from the scene.

 //Hit with Missile or Bullet
 void OnCollisionEnter(Collision collision) {
 if (bDead)
 return;

 if (collision.gameObject.tag == "Bullet") {
 print("AICar Hit with Bullet");
 health -= 30;
 }
 else if (collision.gameObject.tag == "Missile") {
 print("AICar Hit with Missile");
 health -= 50;
 }

 if (health <= 0) {
 bDead = true;
 Explode();
 Destroy(gameObject, 4.0f);
 }
 }

Patrol state
Each state in our FSM has two main methods, Reason and Act. Basically, the Reason
method checks the condition, and takes care of transition to other states. In our patrol
state, the Reason method checks the distance between the player and current AI car
position. If it's close enough, it'll set the transition to SawPlayer. We've already set
up mapping between transitions and states for each of our AI car objects.

public override void Reason(Transform player, Transform npc) {
 if (Vector3.Distance(npc.position, player.position) <= 100.0f) {
 Debug.Log("Switch to Chase State");
 npc.GetComponent<AICarController>().SetTransition(
 Transition.SawPlayer);
 npc.GetComponent<AICarController>().throttle = 0.0f;
 npc.GetComponent<AICarController>().DoHandbrake();
 }
}

Putting It All Together

[196]

So, later in our AdvancedFSM class, this new transition is used to retrieve the current
state correctly. The following is the PerformTransition method of the AdvancedFSM
class that handles this state transition.

 public void PerformTransition(Transition trans) {
 // Check if the currentState has the transition passed as
 //argument
 FSMStateID id = currentState.GetOutputState(trans);
 if (id == FSMStateID.None) {
 Debug.LogError("FSM ERROR: Current State does not have a " +
 "target state for this transition");
 return;
 }

 // Update the currentStateID and currentState
 currentStateID = id;
 foreach (FSMState state in fsmStates) {
 if (state.ID == currentStateID) {
 currentState = state;
 break;
 }
 }
 }

And the Act method of our Patrol states will find the next waypoint, if the AI car
is already near the current destination point, and will update the direction and
speed accordingly.

public override void Act(Transform player, Transform npc) {
 //Find another random patrol point if the current point is
 //reached
 if (Vector3.Distance(npc.position, destPos) <= 5.0f) {
 FindNextPoint();
 curPathIndex = 0;
 //Brake it first before moving to the next point
 npc.GetComponent<AICarController>().DoHandbrake();
 }
}

Chapter 10

[197]

Chase state
The Reason method checks and transitions to ReachPlayer, if the distance between
the player and the AI car is close enough. Otherwise, it'll update the transition to
LostPlayer. So the ReachPlayer transition will update the AI state to the Attack
state while LostPlayer will make the AI car go back to Patrol state.

 //Check the new reason to change state
 public override void Reason(Transform player, Transform npc) {
 //Set the target position as the player position
 destPos = player.position;

 //Check the distance with player tank
 //When the distance is near, transition to attack state
 float dist = Vector3.Distance(npc.position, destPos);
 if (dist <= 60.0f) {
 Debug.Log("Switch to Attack state");
 npc.GetComponent<AICarController>().SetTransition(
 Transition.ReachPlayer);
 }

 //Go back to patrol is it become too far
 if (dist >= 110.0f) {
 Debug.Log("Switch to Patrol state");
 npc.GetComponent<AICarController>().SetTransition(
 Transition.LostPlayer);
 }
 }

The Chase state's Act method is short but requires some background on linear
algebra and trigonometry.

 //Action taken in the current state
 public override void Act(Transform player, Transform npc) {
 //Rotate to the target point
 destPos = player.position;

 npc.GetComponent<AICarController>().throttle = 1.0f;

 Vector3 RelativeWaypointPosition =
 npc.InverseTransformPoint(new Vector3(destPos.x,
 npc.position.y, destPos.z));

 npc.GetComponent<AICarController>().steer =
 RelativeWaypointPosition.x /
 RelativeWaypointPosition.magnitude;
 }

Putting It All Together

[198]

Unity3D has a method called InverseTransformPoint that translates a position
from world space to local space. Currently the player position is in world space. So,
we use this method to find the relative position of the target player car position from
the AI car transform. RelativeWaypointPosition holds the new vector (x, y, z),
which is also the direction vector to the player car from the AI car.

Finding the vector to the Player car

Once we get this vector we can determine by what degree we need to rotate, if any,
towards the direction of player car by dividing the horizontal position by the vector
magnitude or distance. We then apply this angular value to steer the wheels toward
the player car.

Attack state
When the player is close enough to the AI car, we can reach the Attack state. We'll
rotate the gun towards the player car and start shooting coroutine.

 public override void Act(Transform player, Transform npc) {
 //Set the target position as the player position
 destPos = player.position + new Vector3(0.0f, 1.0f, 0.0f);

 Transform turret = weapon.Turret;
 Quaternion turretRotation = Quaternion.LookRotation(
 destPos - turret.position);

Chapter 10

[199]

 turret.rotation = Quaternion.Slerp(turret.rotation,
 turretRotation, Time.deltaTime * curRotSpeed);

 //Shoot shouldn't call every frame
 if (!bStartShooting) {
 //Shoot bullet/Missiles towards the player
 ShootShells();
 bStartShooting = true;
 }
 }

In our Reason method, we check the distance with the player and set the transition
back to either LostPlayer or SawPlayer. These transitions will update the current
state to patrol state or chase state.

 public override void Reason(Transform player, Transform npc) {
 //Check the distance with the player car
 float dist = Vector3.Distance(npc.position,player.position);
 if (dist >= 50.0f && dist < 100.0f) {
 Debug.Log("Switch to Chase State");
 npc.GetComponent<AICarController>().SetTransition(
 Transition.SawPlayer);
 StopShooting();
 }

 //Transition to patrol is the tank become too far
 else if (dist >= 100.0f) {
 Debug.Log("Switch to Patrol State");
 npc.GetComponent<AICarController>().SetTransition(
 Transition.LostPlayer);
 StopShooting();
 }
 }

Weapons
Our player-controlled car has two weapons; a missile launcher and a normal gun,
while the AI cars only have a normal gun. Let us look at them to see how they're
implemented. There are not many AI techniques here though.

Putting It All Together

[200]

Gun
The WeaponGun class simply spawns bullets upon calling its Shoot method.

using UnityEngine;
using System.Collections;

public class WeaponGun : MonoBehaviour {
 public GameObject Bullet;
 public GameObject[] GunGraphics;
 public float ratePerSecond;
 private bool bShoot;

 // Use this for initialization
 void Start() {
 bShoot = false;
 }

 public void Shoot() {
 bShoot = true;

 foreach (GameObject obj in GunGraphics) {
 obj.animation.CrossFade("GunShooting", 0.5f);
 }

 StartCoroutine("ShootBullets");
 }

When shooting bullets we don't want to instantiate too many bullets at once because
of a high frames per second rating. Instead, we would like to limit the shooting
rate to a specific user defined value. We want to wait for a specific duration before
spawning another bullet. We can do this by using coroutines in Unity3D.

 public void StopShoot() {
 //Stop the shooting animation
 if (bShoot) {
 bShoot = false;

 foreach (GameObject obj in GunGraphics) {
 obj.animation.Stop("GunShooting");
 }
 }

 StopCoroutine("ShootBullets");
 }

Chapter 10

[201]

As explained in the Unity3D reference, a coroutine is a function that can suspend
its execution (yield), until the given YieldInstruction finishes. We can start and
stop coroutines using the StartCoroutine and StopCoroutine methods. The
following is our coroutine method, ShootBullets. In this method, we wait for a
certain number of milliseconds based on the specified ratePerSecond value.

 private IEnumerator ShootBullets() {
 SpawnBullet();
 yield return new WaitForSeconds(1.0f / ratePerSecond);
 StartCoroutine("ShootBullets");
 }

This coroutine method just calls our SpawnBullet method that instantiates a new
Bullet prefab at a random position and rotation along the gun's position.

 private void SpawnBullet() {
 int rndSpawnPoint = Random.Range(0, GunGraphics.Length);
 Vector3 SpawnPos =
 GunGraphics[rndSpawnPoint].transform.position;
 Quaternion SpawnRot =
 GunGraphics[rndSpawnPoint].transform.rotation;

 //Create a new Bullet
 GameObject objBullet = (GameObject)Instantiate(Bullet,
 SpawnPos, SpawnRot);
 }
}

Bullet
The Bullet object is set up as a prefab called PlayerLaser. In the chapter assets, you
can find it under Assets | Resources | Prefabs | Bullets.

Location of all our weapons

Putting It All Together

[202]

The Bullet behavior class is added to this laser bullet prefab. It also has a rigid body
and box collider components, so that we can detect collision with other objects. We
also need a particle effect to be played when it hits something.

Setup and appearance of our bullet

And here's our Bullet class. The first thing we do in our Start method is to destroy
this bullet game object automatically after two seconds.

using UnityEngine;
using System.Collections;

public class Bullet : MonoBehaviour {
 public GameObject Particle_Hit;
 public float speed = 100.0f;

 // Use this for initialization
 void Start() {
 Destroy(gameObject, 2.0f);
 }

Chapter 10

[203]

And in the update method, we just move advance in the positive Z direction to move
forward with a defined speed.

 // Update is called once per frame
 void Update () {
 transform.Translate(new Vector3(0, 0, speed *
 Time.deltaTime));
 }

 void OnCollisionEnter(Collision collision) {
 Vector3 contactPoint = collision.contacts[0].point;

 Instantiate(Particle_Hit, contactPoint, Quaternion.identity);
 Destroy(gameObject);
 }
}

The OnCollisionEnter method is called when this game object collides with
something. We just play the bullet particle effect attached and destroy the bullet
object. The other game object being hit by the bullet will handle the damaging taking
and state switching tasks.

Launcher
The missile launcher weapon is also similar to the gun weapon class. It spawns
missiles, and uses coroutines to wait for a few milliseconds between each missile
instantiation. The only difference with the gun weapon is missiles have a mode to lock
and chase down the target if the player aims and shoots correctly on an enemy AI car.

using UnityEngine;
using System.Collections;

public class WeaponMissile: MonoBehaviour {
 public GameObject Missile;
 public Transform SpawnPoint;
 private bool bShoot, bHasTarget;
 private Transform target;

 // Use this for initialization
 void Start() {
 bShoot = false;
 bHasTarget = false;
 }

Putting It All Together

[204]

Then, we initialize our properties in the Start method. And in the Shoot method we
use raycasting to test if there's an AI car at the current mouse position.

 public void Shoot() {
 //Check Whether target exist or not
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
 RaycastHit hitInfo;

 //RayCast only to AI Car which layer number is 9
 int layerMask = 1 << 9;

 if (Physics.Raycast(ray, out hitInfo, 1000.0f, layerMask)) {
 bHasTarget = true;
 target = hitInfo.transform;
 }
 else {
 bHasTarget = false;
 }

 bShoot = true;
 StartCoroutine("ShootMissiles");
 }

The Raycast method's layer mask parameter determines which layers to test against
with the ray generated. AI car layer we set up at layer number 9 previously. By bit
shifting the number one, (…0000000001) in binary, nine places to the left, becomes
(…001000000000) in binary. The result is that all the layers except layer 9 will be
neglected while performing raycasting. If that ray hits with an AI car, then we'll
set bHasTarget to true and set the target transformation. Afterwards, we start the
ShootMissiles coroutine.

 public void StopShoot() {
 //Stop the shooting animation
 if (bShoot) {
 bShoot = false;
 }
 StopCoroutine("ShootMissiles");
 }

 private IEnumerator ShootMissiles() {
 SpawnMissile();
 yield return new WaitForSeconds(
 Random.Range(0.3f, 0.6f));
 StartCoroutine("ShootMissiles");
 }

Chapter 10

[205]

 private void SpawnMissile() {
 //Create a new Missile
 GameObject objMissile = (GameObject)Instantiate(Missile,
 SpawnPoint.position, SpawnPoint.rotation);

 objMissile.GetComponent<Missile>().Initialise(bHasTarget,
 target);
 }
}

Finally, in the SpawnMissile method, we instantiate a new missile prefab at the
missile weapon position. Then, we get the Missile script, and tell it if we have a
target and what that target is.

Missile
Our WeaponMissile or launcher weapon class spawns each missile. During
initialization we check whether there is a target object to chase and destroy for
this missile.

using UnityEngine;
using System.Collections;

public class Missile : MonoBehaviour {
 public GameObject Particle_Hit;
 public float speed = 20.0f;
 private Transform target;

 public void Initialise(bool bHasTarget, Transform target
 = null) {
 if (bHasTarget) {
 this.target = target;
 Destroy(gameObject, 4.0f);
 }
 else {
 Destroy(gameObject, 2.0f);
 }
 }

Putting It All Together

[206]

If there's a target object then in our Update method, we constantly track the target
position and update the direction and rotation values of our missile accordingly.

 // Update is called once per frame
 void Update() {
 if (target != null) {
 //Make the target position upwards alittle bit
 Vector3 newTarPos = target.position +
 new Vector3(0.0f, 1.0f, 0.0f);

 //Rotate towards the target
 Vector3 tarDir = newTarPos - transform.position;
 Quaternion tarRot = Quaternion.LookRotation(tarDir);
 transform.rotation=Quaternion.Slerp(transform.rotation,
 tarRot, 3.0f * Time.deltaTime);
 }

 transform.Translate(new Vector3(0, 0,
 speed * Time.deltaTime));
 }

Finally, like in our bullet class, when the missile hits something we just play the
explosion particle effect and destroy the missile object.

 void OnCollisionEnter(Collision collision) {
 Vector3 contactPoint = collision.contacts[0].point;

 Instantiate(Particle_Hit, contactPoint,
 Quaternion.identity);
 Destroy(gameObject);
 }
}

Chapter 10

[207]

This will produce a cool effect of the target locked missile launched from the side of
the car, as shown in the following screenshot:

Firing missiles at our enemies

Putting It All Together

[208]

Summary
In this chapter, we applied some of the AI techniques that we learned previously
to our simple vehicular combat game. We would be able to apply some more
techniques in a larger game scope, but in this short chapter, we reused the advanced
FSM framework that we built in Chapter 2, Finite State Machines, as well as waypoint
and path following techniques. We could also use our sensor system, while detecting
the environment for the AI cars. But to make the chapter simpler we just accessed
the player's position and checked the distance between the two directly. The AI cars
will follow and attack once the player car is near them, even if it's not in their line
of sight. So this is one area you can apply in order to make the game better. This is
the final chapter of this book, and we hope that you learnt something new in areas
related to artificial intelligence in games as well as in Unity3D.

Index
A
A* algorithm

about 123, 124
testing 141, 142

action 164, 165
AdvancedFSM class 196
AdvancedFSM framework 192
AdvanceFSM class 53 48, 49
Agent 115
AgentAI class 184
AgentController.cs file 166
AI

about 5
in games 6
research areas 6
sensory systems 76
techniques 7

AI car controller 192, 194
AICars entity 186
AI character

about 81, 82
perspective sense 83-85
sense class 83
testing 88
touch sense 86, 87

AIUpdate method 167
Aliens project

versus Robots project 181-184
alignment rule 11
A* pathfinding algorithm 13-20
ArrayList type 126
Artificial Intelligence. See AI
Aspect.cs class 81
Aspect.cs file 81
aspectName 81

AssignNeighbour method 131
AStar class 123 132-134
AStar.FindPath method 136
attack state 44, 198
avoidanceForce property 92
avoidanceRadius property 92
AvoidObstacles method 117-119

B
behave plugin

about 160
debugger 171
downloading, steps for 160, 161
installing, steps for 160, 161
results, exploring 173, 174

Behave.Runtime namespace 166
behavior trees 23-25
betResult guiText object 68
BLAgentBehaveLib.TreeType variable 169
bullet class 35, 36
Bullet object 201

C
CalculateNextMovementPoint() method 98
CalculateObstacles method 129
CalculatePath method 134, 135
C# FSM framework 29
chase state 43, 197
checkBet() method 71
cohesion rule 11
CompareTo method 125, 126
Component completion variable 180
conditional probability

about 59
loaded dice 60, 61

[210]

controller class 97
coroutine method 201
Cube game object 38

D
dead state 45, 46
DebugDrawGrid method 132
decorator 169, 170
Defense of the Ancient (DotA) 9
DetectAspect method 85
Dijkstra algorithm 28
direction property 114
Dynamic AI 64, 65

E
Enemy detected message 88
enemy tank AI

about 39-41
attack state 44
chase state 43
dead state 45
patrol state 42

events component 8
Explosion property 36

F
FadeIn action 173
FadeOut action 174
FindNextPoint method 42
FindPath method 133
Finite State Machines. See FSM
FixedUpdate() method 68, 71
FlockController

about 101-104
code 101

flocking
about 89
from Unity Island Demo 89, 90
implementing 99-101

followRadius 92
followVelocity 92
FSM

about 7, 29, 159, 185, 194, 195
abstract FSM class 38, 39
attack state 198

chase state 197, 198
components 8
enemy tank AI 39
patrol state 195, 196
random 9
with probability 62-64

FSM, components
events component 8
rules component 8
state component 8
transitions component 8

FSMState class 49

G
Game Developers Conference (GDC) 12
GameObject.FindWithTag() method 188
GetColumn method 130
GetGridIndex method 129
GetNeighbours method 134
GetPoint method 111
GetRow method 130
GridManager class 123-129
GridManager object 128
guiText element 68
guiText object 58

H
HeuristicEstimateCost method 132
HFSM 159
hierarchical FSM. See HFSM
Hierarchical Task Networks. See HTNs
HTNs 159

I
Initialise method 83, 85
InstantiateTree method 166
InstantiateTree static method 166
intervalTime property 136
Is Looping flag 111

L
launcher weapon class 205
layers 116, 188
Length property 111

[211]

Locomotion 25-27

M
Manhattan length 15
map

setting up 144
Max Slope property 150
messaging system 10
minimumDistToAvoid variable 120
missile launcher weapon 203, 204
mousePosition object 32

N
Natural language processing (NLP) 6
navigation mesh

about 20-22, 144
baking 145, 146

Navigation Static 145
navmesh. See navigation mesh
Nav Mesh Agent

about 146, 147
destination, updating 148
Target.cs class 148, 149
URL 147

NavMeshAgent array 149
NavMeshLayers

about 151, 152
creating 152
new layer, adding 153

near miss 73, 74
Node class 125, 126
Node object 136
non-player characters (NPCs) 7
NPCTankController class 52, 53

O
obstacleList property 129
obstacles

about 114
avoiding 115-120
custom layer, adding 116

Off Mesh Links
about 153, 154
generation 154, 155
manual off 156

URL 157
OnDrawGizmos method 85, 111, 136
OnGUI() function 60
OnGUI method 117
OnGUI() method 58, 61, 64, 68
OnTriggerEnter event 86
OnTriggerEnter method 87

P
parallel node 179, 180
PARS 69
ParticleExplosion 36
path

about 108, 110
adding 108
follower 111-114
script 110, 111

pathArray property 136
Path.cs script 108
patrol state 42, 195
PatrolState class 50, 51
Paytable and Reel Strips. See PARS
PerformTransition method 52, 196
Perspective.cs file 83
perspective sense 83, 85
Physics.Raycast method 120
player car controller 190, 191
player tank 30
PlayerTankController class

about 30
bullet class 35, 36
bullet, shooting 32
properties 31, 32
tank, controlling 32, 34

PlayerTankController.cs file
code 31

PlayerTank.cs file 79
PlayerTank game object 30
PlayerTank script 79
playerTransform variable 192
polling 10
PriorityQueue class 123, 124, 126, 127
PriorityQueue.cs class 126
PRNG 56
probability

about 56

[212]

conditional probability 59
defining 58
weighted probability 69-72
with FSM 62, 63

pseudorandom number
generator. See PRNG

Pull Lever button 68

R
radius property 110
RAIN

URL 76
random

about 55, 56
class 56
dice game 57, 58

randomFreq 91
Random number generation. See RNG
randomPush value 91
Random.value property 56
range method 57
Raycast method 85, 119, 204
real-time strategy (RTS) game 9
recticle Player game object 187, 191
reference 181
Reset method 167
return to player. See RTP
Rigidbody component 30, 46
RNG 56
Robots project

versus Aliens project 181-184
RTP 69
rules component 8

S
scene

setting up 76, 77, 137-139, 186, 187
script

interfacing with 166, 168
seed property 56
selectors

about 175-177
priority selector 177-179

SelectTopPriority method 168, 177
sense class 83
Sense.cs file 83

sensors
implementing 75

sensor system 10, 76
separation rule 11
sequence 172
SetTransition method 51
Shoot method 200
ShouldDoMyAction decorator 170
s_Instance static variable 128
slope

scene, building with 149-151
slot machine

demo 65
random slot machine 65, 68, 69

Sort method 127
SpawnBullet method 201
SpawnMissile method 205
StartCoroutine method 93, 201
Start function 31
Start method 83, 112, 136
Start() method 70
state class 50
state component 8
statesPoll array 64
steering

about 12
layers 12, 13

steer() method 100, 101
Steer method 114
StopCoroutine method 201

T
tags 188
tank

controlling 32-34
Target.cs class 148
TargetMovement

about 104
file 104, 105

Target object 78, 80
targetTransform variable 80
target variable 102
Taxicab geometry. See Manhattan length
TestCode class 135, 136
throwLoadedDice() method 60
Tick method 167, 168

[213]

toOriginForce 92
toOriginRange 92
Touch.cs file 86
touch sense 86, 87
transitions component 8
Translate() method 96

U
Unity3D reference documentation

URL 132
UnityFlockController entity 90
UnityFlock.cs file 91
UnityFlock script 90, 97
Unity Pro 143
Unity reference documentation

URL 146
Unitys Island Demo

flocking from 89, 90
Update method 82, 83, 113, 117, 118, 120,

191, 206
Update() method 93, 100, 103
UpdateRandom() method 93
UpdateSense method 83, 85

V
Vector3.RotateTowards method 96
vehicles 189

W
WandarPoints 194
Wander.cs file 81
Wander script 82
waypoints

setting up 37
WeaponGun class 191
WeaponMissile class 205
weapons

about 199
bullet object 201-203
gun 200, 201
launcher weapon 203-205
missile 205, 206

weightedReelPoll array list 70
workflow 161-163

Thank you for buying
Unity 4.x Game AI Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3.x Scripting
ISBN: 978-1-84969-230-4 Paperback: 292 pages

Write efficient, reusable scripts to build custom
characters, game environments, and control enemy
AI in your Unity game

1.	 Make your characters interact with buttons and
program triggered action sequences

2.	 Create custom characters and code dynamic
objects and players' interaction with them

3.	 Synchronize movement of character and
environmental objects

4.	 Add and control animations to new and
existing characters

Unity 3.x Game Development
Essentials
ISBN: 978-1-84969-144-4 Paperback: 488 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects,
and more!

1.	 Kick start your game development, and build
ready-to-play 3D games with ease.

2.	 Understand key concepts in game design
including scripting, physics, instantiation,
particle effects, and more.

3.	 Test & optimize your game to perfection with
essential tips-and-tricks.

4.	 Learn game development in Unity version 3
and above, and learn scripting in either C# or
JavaScript

Please check www.PacktPub.com for information on our titles

Unity 3 Game Development
Hotshot
ISBN: 978-1-84969-112-3 Paperback: 380 pages

Eight projects specifically designed to exploit Unity's
full potential

1.	 Cool, fun, advanced aspects of Unity Game
Development, from creating a rocket launcher
to building your own destructible game world

2.	 Master advanced Unity techniques such
as surface shader programming and AI
programming

3.	 Elite Unity programming for those looking to
take their skills to the next level

Unity 3.x Game Development by
Example Beginner's Guide
ISBN: 978-1-84969-184-0 Paperback: 408 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly with Unity 3.x

1.	 Build fun games using the free Unity game
engine even if you've never coded before

2.	 Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

4.	 Packed with ideas, inspiration, and advice for
your own game design and development

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to AI
	Artificial Intelligence (AI)
	AI in games
	AI techniques
	Finite State Machines (FSM)
	Random and probability in AI
	The sensor system
	Polling
	The messaging system

	Flocking, swarming, and herding
	Path following and steering
	A* pathfinding
	A navigation mesh
	The behavior trees
	Locomotion
	The Dijkstra's algorithm

	Summary

	Chapter 2: Finite State Machines
	The player's tank
	The PlayerTankController class
	Initialization
	Shooting bullet
	Controlling the tank

	The bullet class
	Setting up waypoints
	The abstract FSM class
	The enemy tank AI
	The patrol state
	The chase state
	The attack state
	The dead state
	Taking damage

	Using an FSM framework
	The AdvanceFSM class
	The FSMState class
	The state classes
	The PatrolState class

	The NPCTankController class

	Summary

	Chapter 3: Random and Probability
	Random
	Random class
	Simple random dice game

	Definition of probability
	Independent and related events
	Conditional probability
	A loaded dice

	Character personalities
	FSM with probability
	Dynamic AI
	Demo slot machine
	Random slot machine
	Weighted probability
	Near miss

	Summary

	Chapter 4: Implementing Sensors
	Basic sensory systems
	Scene setup
	Player tank and aspect
	Player tank
	Aspect

	AI character
	Sense
	Perspective
	Touch

	Testing
	Summary

	Chapter 5: Flocking
	Flocking from Unity's Island Demo
	Individual Behavior
	Controller

	Alternative implementation
	FlockController

	Summary

	Chapter 6: Path Following and
Steering Behaviors
	Following a path
	Path script
	Path follower

	Avoiding obstacles
	Adding a custom layer
	Obstacle avoidance

	Summary

	Chapter 7: A* Pathfinding
	A* algorithm revisit
	Implementation
	Node
	PriorityQueue
	GridManager
	AStar
	TestCode class

	Scene setup
	Testing
	Summary

	Chapter 8: Navigation Mesh
	Introduction
	Setting up the map
	Navigation Static
	Baking the navigation mesh
	Nav Mesh Agent
	Updating agents' destinations

	Scene with slope
	NavMeshLayers
	Off Mesh Links
	Generated Off Mesh Links
	Manual Off Mesh Links

	Summary

	Chapter 9: Behavior Trees
	Behave plugin
	Workflow
	Action
	Interfacing with the script
	Decorator
	Behave debugger
	Sequence
	Exploring Behave results
	Selector
	Priority selector
	Parallel
	Reference
	The Robots versus Aliens project
	Summary

	Chapter 10: Putting it All Together
	Scene setup
	Tags and layers

	Vehicles
	Player car controller
	AI Car Controller
	Finite State Machines (FSMs)
	Patrol state
	Chase state
	Attack state

	Weapons
	Gun
	Bullet
	Launcher
	Missile

	Summary

	Index

